

UKMLA

Practice

Questions

for medical student revision

**500+ MCQs with
expert clinical
reasoning explained**

**Rebecca Richardson
and Ricky Ellis**

Cardiology

Endocrinology

Gastroenterology

Hepato-pancreato-biliary

Haematology

Immunology & allergy

Neurology

Renal

Respiratory

Surgical principles

The acute abdomen

Gastrointestinal surgery

The breast

Vascular surgery

Urology

Critical illness

Emergency presentations

Rheumatology

Trauma & orthopaedics

UKMLA Practice Questions

for medical student revision

*"I wish this had been available when I
was doing the many MCQs throughout
my career!"*

From the Foreword by Peter A. Brennan OBE,
Honorary Professor of Surgery, Portsmouth
Hospitals University NHS Trust

Feedback, errors and omissions

We are always pleased to receive feedback (good and bad) about our books – if you would like to comment on any of our books, please email info@scionpublishing.com.

We've worked really hard with the authors to ensure that everything in the book is correct. However, errors and ambiguities can still slip through in books as complex as this. If you spot anything you think might be wrong, please email us and we will look into it straight away. If an error has occurred, we will correct it for future printings and post a note about it on our website so that other readers of the book are alerted to this.

Thank you for your help.

UKMLA Practice Questions

for medical student revision

**500+ MCQs with expert
clinical reasoning explained**

Rebecca Richardson

BMedSci, BMBS, MRCP, PGCert MedEd, FHEA
Internal Medicine Trainee, Royal Derby Hospital, Derby

Ricky Ellis

PhD, DPM, MRCS, MBChB, BSc, MFSTEd, FHEA
Global Development Medical Director and Honorary
Professor, Health Research Institute, Edge Hill University

© Scion Publishing Limited, 2026

ISBN 9781914961717

All rights, including for text and data mining (TDM), artificial intelligence (AI) training, and similar technologies, are reserved. No part of this book may be reproduced or transmitted, in any form or by any means, without permission.

A CIP catalogue record for this book is available from the British Library.

Scion Publishing Limited

Long Hanborough, Oxfordshire, UK

www.scionpublishing.com

Important Note from the Publisher

The information contained within this book was obtained by Scion Publishing Ltd from sources believed by us to be reliable. However, while every effort has been made to ensure its accuracy, no responsibility for loss or injury whatsoever occasioned to any person acting or refraining from action as a result of information contained herein can be accepted by the authors or publishers.

Readers are reminded that medicine is a constantly evolving science and while the authors and publishers have ensured that all dosages, applications and practices are based on current indications, there may be specific practices which differ between communities. You should always follow the guidelines laid down by the manufacturers of specific products and the relevant authorities in the country in which you are practising.

Although every effort has been made to ensure that all owners of copyright material have been acknowledged in this publication, we would be pleased to acknowledge in subsequent reprints or editions any omissions brought to our attention.

Registered names, trademarks, etc. used in this book, even when not marked as such, are not to be considered unprotected by law.

Typeset by Medlar Publishing Solutions Pvt Ltd, India

Printed in the UK

Last digit is the print number: 10 9 8 7 6 5 4 3 2 1

Contents

About the authors	vi	15 Gynaecology	179
List of contributors	vi	16 Haematology	207
Foreword	ix	17 Hepato-pancreato-biliary	229
Preface	x	18 Immunology and allergy	239
Abbreviations	xi	19 Neurology	247
How to use this book	xviii	20 Obstetrics	277
01 The acute abdomen	1	21 Ophthalmology	297
02 Anaesthetics	13	22 Paediatrics	309
03 The breast	19	23 Palliative care	383
04 Cardiology	25	24 Psychiatry	389
05 Community-based medicine	41	25 Renal	403
06 Critical illness	57	26 Respiratory	417
07 Dermatology	63	27 Rheumatology	431
08 Ear, nose and throat	73	28 Trauma & orthopaedics	457
09 Emergency presentations	87	29 Urology	483
10 Endocrinology	109	30 Vascular disease	495
11 Gastroenterology	133	31 'Test yourself' questions	513
12 Gastrointestinal surgery	149	Figure acknowledgements	519
13 General surgical principles	155		
14 Geriatric medicine	161		

Note: answers and explanations follow the questions in each chapter.

About the authors

Rebecca Richardson is an Internal Medicine Trainee currently working in the East Midlands. After graduating from the University of Nottingham with first-class honours, she became passionate about helping others to follow in her footsteps, going on to complete a PGCert in Medical Education and becoming a Fellow of the Higher Education Academy. Rebecca has continued her mission to support students and trainees through creating a variety of medical education resources, including her *Medical Student Revision Guides*, which have already helped thousands of medical students across the UK prepare for their exams.

Ricky Ellis is a Global Development Medical Director and Honorary Professor of Education at the Health Research Institute, Edge Hill University. An award-winning trainer, he regularly organises teaching courses, including the internationally delivered *Urology Boot Camp for Medical Students*. He is passionate about improving training for medical students and doctors and has received several prestigious medical education awards, including the Silver Suture Award from the Association of Surgeons in Training and the Faculty of Surgical Trainers, in recognition of his contributions to and excellence in surgical training.

List of contributors

Chapter	Chapter author	Chapter reviewer
The acute abdomen	Dr Navraj Sidhu Resident Medical Officer, St John of God Murdoch Hospital	Mr Jon Lund Consultant Colorectal Surgeon, University Hospitals of Derby and Burton NHS Foundation Trust
Anaesthetics	Dr Francesca Birch Anaesthetics CT1, University Hospitals Plymouth NHS Trust	Dr Richard Telford Retired Consultant Anaesthetist, Royal Devon University Healthcare NHS Foundation Trust
The breast	Dr Hallie Awarah ST1 radiology trainee, Walsall Healthcare NHS Trust	Miss Ruth Parks Honorary Assistant Professor, University of Nottingham and Specialty Registrar in Breast Surgery, University Hospitals of Derby and Burton NHS Foundation Trust
Cardiology	Dr Hannah Withers Cystic fibrosis clinical fellow, University Hospitals Bristol and Weston NHS Foundation Trust	Dr Sharareh Vahabi Consultant Cardiologist, University Hospitals Bristol and Weston NHS Foundation Trust
Community-based medicine	Dr Abigail Morris GPST1, Sherwood Forest Hospitals NHS Foundation Trust	Dr Juanita Amin General Practitioner, Sandwell and West Birmingham NHS Trust
Critical illness	Dr Abigail Pelling ACCS Trainee, Royal Cornwall Hospitals NHS Trust	Dr Reena Ellis Consultant Anaesthetist, Nottingham University Hospitals NHS Trust
Dermatology	Dr Emilia Barber Foundation Year 2 Doctor, Nottingham University Hospitals NHS Trust	Dr Beenish Afzal Specialty Registrar in Dermatology, Sheffield Teaching Hospitals NHS Foundation Trust

Chapter	Chapter author	Chapter reviewer
Ear, nose and throat	Dr Imogen Milner Resident Medical Officer, Gosford Hospital, New South Wales	Ms Kerrynn Hanks Specialty Registrar in Ear, Nose & Throat, Great Western Hospitals NHS Foundation Trust
Emergency presentations	Dr Flora Burton ACCS ST2 Trainee, Sheffield Teaching Hospitals NHS Foundation Trust	Dr Elizabeth Robinson Associate Specialist in Emergency Medicine and Senior Teaching Fellow, University Hospitals of Derby and Burton NHS Foundation Trust
Endocrinology	Dr Karmen Quek Internal Medicine Trainee, Nottingham University Hospitals NHS Trust	Dr Chia Ooi Specialty Registrar in Diabetes and Endocrinology, Sherwood Forest Hospitals NHS Foundation Trust
Gastroenterology	Dr Nathan Dumpleton Internal Medicine Trainee, Buckinghamshire Healthcare NHS Trust	Dr Muhammad Hafiz Kamarul Bahrin Specialty Registrar in Gastroenterology, Nottingham University Hospitals NHS Trust
		Dr Darren Fernandes Specialty Registrar in Gastroenterology, Sherwood Forest Hospitals NHS Foundation Trust
		Dr Naseer Bhatti Specialty Registrar in Gastroenterology, Sherwood Forest Hospitals NHS Foundation Trust
Gastrointestinal surgery	Dr Michaela Silver Junior Clinical Fellow, University College London Hospitals NHS Foundation Trust	Mr Ian Daniels Consultant Colorectal and General Surgeon, Royal Devon University Healthcare NHS Foundation Trust
General surgical principles	Dr Harriet Johnson Junior Clinical Fellow, Intensive Care Medicine, University Hospitals Sussex NHS Foundation Trust	Miss Jaspreet Seehra Research Fellow, University of Nottingham General Surgery Registrar, University Hospitals of Derby and Burton NHS Foundation Trust
Geriatric medicine	Dr Charles Barry Junior Clinical Fellow, University Hospitals of Derby and Burton NHS Foundation Trust	Dr Lizzie Moriarty Consultant Geriatrician, Sherwood Forest Hospitals NHS Foundation Trust
	Dr Rebecca Richardson Internal Medicine Trainee, University Hospitals of Derby and Burton NHS Foundation Trust	Dr India Merrony Specialty Doctor in Department of Ageing and Health, Frailty Academy Education Fellow, Royal Surrey NHS Foundation Trust
Gynaecology	Dr Harriet Crossland Sexual Health Clinical Fellow, Sherwood Forest Hospitals NHS Foundation Trust	Dr Anna Collins Sub-specialty trainee in Gynae-oncology, University Hospitals of Derby and Burton NHS Foundation Trust
Haematology	Dr Peter Arnold-Smith Internal Medicine Trainee, Guy's & St Thomas' NHS Foundation Trust	Dr Kathryn McVinnie Specialty Registrar in Haematology, London North West University Healthcare NHS Trust
Hepato-pancreato-biliary	Dr Sophie Jefferson Locum SHO, Croydon Health Services NHS Trust	Dr Mohamed Elnagar Specialty Registrar in Gastroenterology, Nottingham University Hospitals NHS Trust
Immunology and allergy	Dr Ruth Strain Internal Medicine Trainee, University Hospitals of Derby and Burton NHS Foundation Trust	Dr Jennie Gane Consultant Respiratory Physician with an interest in Allergy, University Hospitals of Derby and Burton NHS Foundation Trust
		Mohammed Almahi A Abdalla Speciality Registrar in Allergy & Clinical and Laboratory Immunology, Nottingham University Hospitals NHS Trust

Chapter	Chapter author	Chapter reviewer
Neurology	Dr Bushra Kabiri Academic Clinical Fellow in Neurology, Nottingham University Hospitals NHS Trust	Dr Sue Yin Lim Consultant Neurologist, Nottingham University Hospitals NHS Trust Dr James Scott Consultant Stroke Physician, University Hospitals of Derby and Burton NHS Foundation Trust
Obstetrics	Dr Amie Hibbard Specialty Trainee in Obstetrics & Gynaecology, University Hospitals of Derby and Burton NHS Foundation Trust	Dr Nilofar Noor Specialty Registrar in Obstetrics & Gynaecology, University Hospitals of Derby and Burton NHS Foundation Trust
Ophthalmology	Dr Tooba Sahar Internal Medicine Trainee, Gateshead Health NHS Foundation Trust	Mr Di Zou Consultant Ophthalmologist, University Hospitals of Derby and Burton NHS Foundation Trust
Paediatrics	Dr Beth Dumbleton Clinical Paediatric Teaching Fellow, Imperial College Healthcare NHS Trust Dr Polly McGrath Specialty Trainee in Paediatrics, Great Ormond Street Hospital for Children NHS Foundation Trust	Dr Katherine Jones Specialty Registrar in Paediatrics, Royal Devon University Healthcare NHS Foundation Trust Dr Abisola Olawale-Cole Consultant Paediatrician, Whittington Health NHS Trust
Palliative care	Dr Joanna Mantio Internal Medicine Trainee, Royal Free London NHS Foundation Trust	Dr Vanessa Jackson Consultant in Palliative Medicine, Nottinghamshire Healthcare NHS Foundation Trust
Psychiatry	Dr Luke Robinson CT3 Psychiatry Trainee, Derbyshire Healthcare NHS Foundation Trust	Dr Daniela Tomus Consultant Psychiatrist and Clinical Director of CAMHS, Derbyshire Healthcare NHS Foundation Trust
Renal	Dr Kathan Desai Locum SHO, Sherwood Forest Hospitals NHS Foundation Trust	Dr Eoghan Redmond Specialty Registrar in Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust
Respiratory	Dr Veera Khanolkar Internal Medicine Trainee, Nottingham University Hospitals NHS Trust	Dr John Hutchinson Consultant in Respiratory Medicine, Sherwood Forest Hospitals NHS Foundation Trust
Rheumatology	Dr Ruchi Desai Junior Clinical Fellow, University Hospitals of Derby and Burton NHS Foundation Trust Dr Katherine Butterworth Medical Principal House Officer (PHO), Royal Brisbane and Women's Hospital	Dr Andrew Allard Consultant Rheumatologist, Royal United Hospitals Bath NHS Foundation Trust
Trauma & orthopaedics	Dr Arul Madhavan Clinical Fellow in Plastic Surgery, North Bristol NHS Trust	Mr Sandeep Deshmukh Consultant Hand & Orthopaedic Surgeon, Nottingham University Hospitals NHS Trust Ms Susan Hendrickson Consultant Plastic Surgeon, North Bristol NHS Trust
Urology	Dr Suraj Ghandi SHO in Paediatric Surgery, Queensland Children's Hospital	Miss Neha Sihra Consultant Urological Surgeon, Barts Health NHS Trust
Vascular disease	Dr Fatema Radhi Foundation Year 2 Doctor, Nottingham University Hospitals NHS Trust	Ms Emily Salt Specialty Registrar in Vascular Surgery, Nottingham University Hospitals NHS Trust

Foreword

With a busy medical undergraduate curriculum, **the need for good educational resources**, to help students understand and retain the complex knowledge required to succeed, has never been greater. **This book is one such resource.** It is the third book in a series written by Dr Becky Richardson and Mr Ricky Ellis, two respected colleagues who are committed to medical education. The first two books are extremely well-written and popular resources. The first book covers General Medicine and Surgery for Medical Students, and the second is on Clinical Specialties.

This excellent new book is a collection of peer-reviewed multiple-choice questions (MCQs) that accompanies these first two books. It will not only provide question practice for medical students, but also help **consolidate learning and develop important skills in clinical reasoning.** It is designed to be a companion to the already published 'Medical Student Revision Guides', which cover the entirety of the UK Medical Licensing Assessment (MLA) curriculum, and more. In this respect, this new book has the same chapter headings as the two previously published books, as well as references to corresponding page numbers to signpost readers for further reading.

The questions themselves (10–30 per chapter) assess **the whole undergraduate medical and MLA curriculum**, with a 'mini-mock test' at the end of the book. In addition to providing the correct answers and explanations for each question, a unique selling point is that it also **covers MCQ exam technique.** I wish this had been available when I was doing the many MCQs throughout my career! **A systematic and colour-coded approach** makes the subjects easier to digest and will appeal to colleagues with neurodivergent learning needs.

In summary, I believe this book will be **a great resource** to not only test knowledge through MCQs, but also help develop exam technique and clinical reasoning.

I wish you the very best of luck with your medical school exams and future career in the great medical profession.

Peter A Brennan

OBE, MD, PhD, FRCS (Eng, Irel, Glasg, Edin), FFST (Ed), FDSRCS

Consultant Oral and Maxillofacial Surgeon

Honorary Professor of Surgery

Portsmouth Hospitals University NHS Trust

Portsmouth, UK

Preface

The purpose of this book is twofold: to support you in preparing for medical school exams, and to help you grow into a logical, reflective and effective clinician.

When faced with an upcoming exam, how many of us will simply read and re-read information, with the hope of committing it to memory? Unfortunately, **this passive approach has shown minimal benefit** on long-term learning and is a mistake that all too many students make. Instead, a wealth of educational research highlights **the importance of active learning strategies**, in particular the use of 'information retrieval', to strengthen neural connections and consolidate learning. One of the most powerful ways to practise 'information retrieval' is through question practice, an approach that forms the foundation of this book. When used consistently and effectively, question practice enhances long-term retention and comprehension of content, **transforming study time into a highly efficient learning process**.

However, **medicine is about more than just exams**, and being a doctor goes beyond recounting facts. Competent clinicians must draw on their knowledge to interpret patterns of signs and symptoms, forming sound differential diagnoses and making meaningful clinical decisions. This cognitive process is known as 'clinical reasoning'.

Despite being an essential skill for effective medical practice, **clinical reasoning is often under-taught at medical school**. This is partly due to the misconception that it can only be developed through multiple hours spent in a clinical environment.

This book aims to challenge that notion. By integrating evidence-based educational strategies with carefully designed clinical scenarios, it offers a practical and engaging way to begin developing your clinical reasoning skills, from wherever you choose to study. Through active learning and structured practice, you will not only prepare for your exams but also take meaningful steps toward becoming the clinician you aspire to be.

I am forever grateful for any feedback that can help me to better help you, so please notify me of anything potentially misleading (info@scionpublishing.com), or leave a review on Amazon with your honest thoughts.

I wish you luck with your exams, and all the best for your future careers.

Rebecca Richardson

Disclaimer

It is important to note that this book is designed as a revision tool and aide-memoire. It is not intended to give an in-depth understanding of each condition, but rather to focus on the key points that often appear in undergraduate exams. It should not be solely relied upon in clinical situations; please always check the most current and local guidelines before implementing management or administering any treatment.

Every attempt has been made to ensure that the most up-to-date information has been included at the time of writing this book. However, due to the continuously evolving nature of the medical profession, and with variations in clinical practice between hospital Trusts, this cannot be guaranteed. It is therefore advised that you correlate these notes to other resources, and supplement them with your own clinical encounters, to ensure a complete learning experience. Readers should also ensure that they learn all elements of their own medical school curriculum, regardless of whether they are covered in this book.

Abbreviations

# – Fracture	AIDS – Acquired immune deficiency syndrome	ATLS – Advanced trauma life support
2ww – 2 week wait (<i>replaced by USC</i>)	AION – Anterior ischaemic optic neuropathy	ATN – Acute tubular necrosis
5-ASA – 5-aminosalicylic acid	AIR – Anti-inflammatory reliever	AV – Arteriovenous
a. – Arterial	AKI – Acute kidney injury	AVM – Arteriovenous malformation
aa. – Arteries	Al – Aluminium	AVN – Avascular necrosis
AAA – Abdominal aortic aneurysm	Ald – Aldosterone	AVP – Arginine vasopressin
Ab – Antibody	ALI – Acute limb ischaemia	AVP-D – AVP deficiency
ABCDE – Airways, Breathing, Circulation, Disability, Exposure	ALL – Acute lymphoblastic leukaemia	AVP-R – AVP resistance
ABG – Arterial blood gas	ALND – Axillary lymph node dissection	AVPU – Alert, verbal, pain, unresponsive
ABPA – Allergic bronchopulmonary aspergillosis	ALP – Alkaline phosphatase	AVSD – Atrioventricular septal defect
ABPI – Ankle–brachial pressure index	ALT – Alanine aminotransferase	AXR – Abdominal X-ray
ABPM – Ambulatory blood pressure monitoring	AMA – Antimitochondrial antibody	BAME – Black, Asian and minority ethnic
Abs – Antibodies	AMD – Age-related macular degeneration	BASDAI – Bath Ankylosing Spondylitis Disease Activity Index
ABX – Antibiotics	AMH – Anti-Müllerian hormone	BASFI – Bath Ankylosing Spondylitis Functional Index
AC – Acromioclavicular or Air conduction	AMHP – Advanced mental health practitioner	BB – Beta-blocker
ACA – Anterior cerebral artery	AML – Acute myeloid leukaemia	BBB – Blood–brain barrier or Bundle branch block
ACE – Angiotensin-converting enzyme	AMT – Abbreviated mental test	BC – Bone conduction
ACEi – Angiotensin-converting enzyme inhibitor	ANA – Antinuclear antibody	BCC – Basal cell carcinoma
ACh – Acetylcholine	ANCA – Antineutrophil cytoplasmic antibody	BCG – Bacille Calmette–Guérin (TB vaccine)
AChE – Acetylcholinesterase	Anti-CCP – Anticyclic citrullinated peptide	BD – Twice a day
ACL – Anterior cruciate ligament	Anti-SM – Anti-smooth muscle	BDR – Bronchodilator reversibility
ACR – Albumin–creatinine ratio	AOE – Acute otitis externa	BE – Base excess
ACS – Acute coronary syndrome or Abdominal compartment syndrome	AOM – Acute otitis media	BG – Blood glucose
ACTH – Adrenocorticotrophic hormone	AP – Anterior–posterior or Antipsychotic	B-hCG – Beta human chorionic gonadotrophin
AD – Antidepressant	APCKD – Adult polycystic kidney disease	BiPAP – Bilevel positive airway pressure
ADCC – Antibody-dependent cell-mediated cytotoxicity	APH – Antepartum haemorrhage	BLS – Basic life support
ADH – Antidiuretic hormone	APL – Abductor pollicis longus	BM – Basement membrane or Bone marrow
ADHD – Attention deficit hyperactivity disorder	APS – Antiphospholipid syndrome	BMD – Becker muscular dystrophy or Bone mineral density
ADLs – Activities of daily living	APTT – Activated partial thromboplastin time	BMI – Body mass index
ADRT – Advanced decision to refuse treatment	ARB – Angiotensin receptor blocker	BMR – Basal metabolic rate
AED – Anti-epileptic drug	ARDS – Acute respiratory distress syndrome	BMT – Bone marrow transplant
AF – Atrial fibrillation	AROM – Artificial rupture of membranes	BNP – B-type natriuretic peptide
AFP – Alpha fetoprotein	ART – Anti-retroviral treatment	BP – Blood pressure
AHA – Autoimmune haemolytic anaemia	AS – Aortic stenosis	BPAD – Bipolar affective disorder
	ASA – American Society of Anesthesiologists	BPH – Benign prostatic hyperplasia
	ASD – Atrial septal defect or Autism spectrum disorder	
	ASIS – Anterior superior iliac spine	
	AST – Aspartate aminotransferase	

BPPV – Benign paroxysmal positional vertigo	CLL – Chronic lymphocytic leukaemia	CTO – Community treatment order
BR – Bilirubin	CLTI – Critical limb-threatening ischaemia	CTPA – Computed tomography pulmonary angiogram
BRCA – Breast cancer gene	CML – Chronic myeloid leukaemia	CTS – Carpal tunnel syndrome
BSO – Bilateral salpingo-oophorectomy	CMPA – Cow's milk protein allergy	Cu – Copper
BV – Bacterial vaginosis	CMT – Charcot–Marie–Tooth	Cu-IUD – Copper intrauterine device
BW – Birth weight	CMV – Cytomegalovirus	CV – Cardiovascular
BZD – Benzodiazepine	CN – Cranial nerve	CVA – Cerebrovascular accident
Ca – Calcium	CNS – Central nervous system	CVC – Central venous catheter
ca – Cancer	CO – Cardiac output	CVD – Cardiovascular disease
CABG – Coronary artery bypass graft	CoA – Coarctation of the aorta	CVI – Chronic venous insufficiency
CAD – Coronary artery disease	COC – Ceiling of care	CVID – Common variable immunodeficiency
CAE – Childhood absence epilepsy	COCP – Combined oral contraceptive pill	CVL – Central venous line
CAH – Congenital adrenal hyperplasia	COMT – Catechol-O-methyltransferase	CVP – Central venous pressure
CAI – Carbonic anhydrase inhibitors	COPD – Chronic obstructive pulmonary disease	CVS – Chorionic villus sampling
CAMHS – Child and Adolescent Mental Health Services	CPA – Costophrenic angle	CVST – Cortical venous sinus thrombosis
CAP – Community-acquired pneumonia	CPAP – Continuous positive airway pressure	CWP – Coal workers' pneumoconiosis
Carb – Carbohydrate	CPEO – Chronic progressive external ophthalmoplegia	CXR – Chest X-ray
CBD – Common bile duct	CPN – Community psychiatric nurse	d – Day
CBG – Capillary blood glucose	CPOC – Centre for Perioperative Care	D&V – Diarrhoea & vomiting
CBK – Capillary blood ketones	CPPD – Calcium pyrophosphate crystal deposition	DA – Dopamine
CBR – Conjugated bilirubin	CPR – Cardiopulmonary resuscitation	DAPT – Dual antiplatelet therapy
CBT – Cognitive behavioural therapy	Cr – Creatinine	DAS – Disease activity score
CC – Coracoclavicular	CRA – Central retinal artery	dB – Decibel
CCB – Calcium channel blocker	CRAO – Central retinal artery occlusion	DBP – Diastolic blood pressure
CCF – Congestive cardiac failure	CRC – Colorectal cancer	DBT – Dialectical behaviour therapy
CCK – Cholecystokinin	CRH – Corticotrophin-releasing hormone	DC twins – Dichorionic twins
CEA – Carcinoembryonic antigen	CRL – Crown–rump length	DCCV – Direct current cardioversion
CES – Cauda equina syndrome	CRP – C-reactive protein	DCDA – Dichorionic diamniotic
CF – Clotting factor or Cystic fibrosis	CRT – Capillary refill time	DCIS – Ductal carcinoma <i>in situ</i>
CFS – Clinical Frailty Scale	CRVO – Central retinal vein occlusion	DCML – Dorsal column medial lemniscus
CFTR – Cystic fibrosis transmembrane conductance regulator	CSA – Chronic stable angina	dcSSc – Diffuse cutaneous systemic sclerosis
CGA – Comprehensive geriatric assessment	CSCI – Continuous subcutaneous infusion (syringe driver)	DDH – Developmental dysplasia of the hip
CHD – Coronary heart disease	C-section – Caesarean section	DDx – Differential diagnosis
CHF – Chronic/congestive heart failure	CSF – Cerebral spinal fluid	DEXA – Dual energy X-ray absorptiometry
CHL – Conductive hearing loss	CSOM – Chronic suppurative otitis media	DHEA(-S) – Dehydroepiandrosterone (sulfate)
CHO – Carbohydrate	CSS – Carotid sinus syndrome	DHP – Dihydropyridine
CI – Contraindication	CT – Computed tomography	DHS – Dynamic hip screw
CIDP – Chronic inflammatory demyelinating polyradiculopathy	CT CAP – Computed tomography chest, abdomen & pelvis	DIC – Disseminated intravascular coagulation
CIN – Cervical intraepithelial neoplasia	CT KUB – CT kidneys, ureters, bladder	DILI – Drug-induced liver injury
CJD – Creutzfeldt–Jakob disease	CTA – Computed tomography angiography	DIPJ – Distal interphalangeal joint
CK – Creatine kinase	CTAP – Computed tomography abdomen & pelvis	DKA – Diabetic ketoacidosis
CKD – Chronic kidney disease	CTD – Connective tissue disease	DLQI – Dermatology Life Quality Index
CL – Corpus luteum	CTG – Cardiotocography	Dm – Dermatomyositis
CLD – Chronic liver disease		DM – Diabetes mellitus
CLI – Chronic limb ischaemia		DMARD – Disease-modifying antirheumatic drug
		DMD – Duchenne muscular dystrophy

DNACPR – Do not attempt cardiopulmonary resuscitation	ESR – Erythrocyte sedimentation rate	GB – Gallbladder
DOAC – Direct oral anticoagulant	ESWL – Extra-corporeal shock wave lithotripsy	GBS – Group B streptococcus or Guillain–Barré syndrome
DPP4 – Dipeptidyl-peptidase 4	ET – Essential thrombocythaemia	GC – Glucocorticoid
DRE – Digital rectal examination	ET tube – Endotracheal tube	GCA – Giant cell arteritis
dsDNA – Double-stranded DNA	EUA – Examination under anaesthetic	GCS – Glasgow Coma Score/Scale
DSM-5 – Diagnostic and Statistical Manual of Mental Disorders, 5th edition	EUPD – Emotionally unstable personality disorder	GCSF – Granulocyte colony-stimulating factor
DVLA – Driver and Vehicle Licensing Agency	EVAR – Endovascular aneurysm repair	GDD – Global developmental delay
DVT – Deep venous thrombosis	FAP – Familial adenomatous polyposis	GDM – Gestational diabetes mellitus
Dx – Diagnosis	FAST – Focused Assessment with Sonography in Trauma	GFR – Glomerular filtration rate
EAM – External acoustic meatus	FB – Foreign body	GGT – Gamma-glutamyl transferase
EASI – Eczema Area & Severity Index	FBC – Full blood count	GH – Growth hormone
EBV – Epstein–Barr virus	FBS – Fetal blood sampling	GI – Gastrointestinal
EC – Emergency contraception	FCU – First catch urine	GIST – Gastrointestinal stromal tumour
ECG – Electrocardiogram	FDP – Flexor digitorum profundus	GIT – Gastrointestinal tract
ECHO – Echocardiogram	FDS – Flexor digitorum superficialis	GLP1 – Glucagon-like peptide 1
ECMO – Extra-corporeal membrane oxygenation	Fe – Iron	GnRH – Gonadotropin-releasing hormone
ECT – Electroconvulsive therapy	FeNO – Fraction of expired nitrous oxide	GOJ – Gastro–oesophageal junction
ECV – External cephalic version	FEV₁ – Forced expiratory volume in 1 second	GORD – Gastro–oesophageal reflux disease
ED – Emergency Department	FFF – Fresh frozen plasma	GP – General practitioner
EDD – Estimated delivery date	FHH – Familial hypocalciuric hypercalcaemia	GPA – Granulomatosis with polyangiitis
EDS – Ehlers–Danlos syndrome	FHR – Fetal heart rate	GTN – Glyceryl trinitrate
EEG – Electroencephalogram	FHx – Family history	GTPS – Greater trochanteric pain syndrome
EF – Ejection fraction	FICB – Fascia iliaca compartment block	GUM – Genitourinary medicine
eGFR – Estimated GFR	FiO₂ – Fraction of inspired oxygen	h – Hour
eGPA – Eosinophilic granulomatosis with polyangiitis	FISH – Fluorescence <i>in situ</i> hybridisation	H₂RA – H ₂ receptor antagonist
EID – Electronic implantable device	FIT – Faecal immunochemical test	HAP – Hospital-acquired pneumonia
ELBW – Extremely low birth weight	FN – Facial nerve	Hb – Haemoglobin
ELISA – Enzyme-linked immunosorbent assay	FNA – Fine needle aspiration	HbA1c – Glycated haemoglobin
EMA – Endomysial antibody	FNA(C) – Fine needle aspiration (cytology)	HbF – Fetal haemoglobin
EMDR – Eye movement desensitisation & reprocessing	FNB – Femoral nerve block	HBPM – Home blood pressure monitoring
EMG – Electromyography	FNE – Flexible nasal endoscopy	HBV – Hepatitis B virus
ENT – Ear, nose and throat	FOOSH – Fall on outstretched hand	hCG – Human chorionic gonadotrophin
EOM – Extraocular muscles	FPL – Flexor pollicis longus	HCM – Hypertrophic cardiomyopathy
EPB – Extensor pollicis brevis	FR – Failure rate	HCV – Hepatitis C virus
EPL – Extensor pollicis longus	FSH – Follicle-stimulating hormone	HDL – High density lipoprotein
EPO – Erythropoietin	FSU – First-stream urine	HDU – High dependency unit
EPSE – Extra-pyramidal side-effects	FTD – Frontotemporal dementia	Hep – Hepatitis
ER – Oestrogen receptor	FTT – Failure to thrive	HER2 – Human epidermal growth factor receptor 2
ERCP – Endoscopic retrograde cholangiopancreatography	FVC – Forced vital capacity	HF – Heart failure
ERPC – Evacuation of retained products of conception	G&S – Group & save	HFpEF – Heart failure with preserved ejection fraction
ESA – Erythropoiesis-stimulating agent	G6PD – Glucose 6 phosphate dehydrogenase	HFrEF – Heart failure with reduced ejection fraction
	GA – General anaesthesia	HG – Hyperemesis gravidarum
	GABA – Gamma-aminobutyric acid	HHS – Hyperosmolar hyperglycaemic state
	GAD – Generalised anxiety disorder or Glutamic acid decarboxylase	HHV – Human herpes virus

HIE – Hypoxic ischaemic encephalopathy	Ig – Immunoglobulin	IcSSc – Limited cutaneous systemic sclerosis
HIT – Heparin-induced thrombocytopenia	IGF – Insulin-like growth factor	LDH – Lactate dehydrogenase
HIV – Human immunodeficiency virus	IHD – Ischaemic heart disease	LDL – Low density lipoprotein
HL – Hearing loss or Hodgkin lymphoma	IIH – Idiopathic intracranial hypertension	L-dopa – Levodopa
HLA – Human leukocyte antigen	IIM – Idiopathic inflammatory myopathies	LEMS – Lambert–Eaton myasthenic syndrome
HLHS – Hypoplastic left heart syndrome	ILAE – International League Against Epilepsy	LFT – Liver function test
HMB – Heavy menstrual bleeding	ILD – Interstitial lung disease	LGA – Large for gestational age
HNPPC – Hereditary non-polyposis colorectal cancer	ILGF – Insulin-like growth factor	LH – Luteinising hormone
HNPP – Hereditary neuropathy with pressure palsies	ILR – Internal loop recorder	LHS – Left-hand side
HPA axis – Hypothalamic–pituitary–adrenal axis	IM – Intramuscular	LIF – Left iliac fossa
HPCR – High pressure chronic retention	IM nail – Intra-medullary nail	LLETZ – Large loop excision of the transformation zone
HPL – Human placental lactogen	IMA – Inferior mesenteric artery	LLSE – Lower left sternal edge
HPLC – High performance liquid chromatography	IMB – Intermenstrual bleeding	LMA – Laryngeal mask airway
HPT – Hyperparathyroidism	inc. – Including	LMN – Lower motor neurone
HPV – Hepatic portal vein or Human papillomavirus	INR – International normalised ratio	LMP – Last menstrual period
HR – Heart rate	IOL – Induction of labour or Intraocular lens	LMWH – Low molecular weight heparin
HRCT – High-resolution CT scan	IOP – Intraocular pressure	LN – Lymph node
HRT – Hormone replacement therapy	IPC – Intermittent pneumatic compression	LNG – Levonorgestrel
HS – Hereditary spherocytosis	IPSS – International Prostate Symptom Score	LNG-IUD – Levonorgestrel intrauterine device
HSP – Henoch–Schönlein purpura	IR – Immediate release	LOC – Loss of consciousness
HSV – Herpes simplex virus	IRMA – Intraretinal microvascular abnormality	LP – Lumbar puncture
HTN – Hypertension	ITP – Immune thrombocytopenic purpura	LP reflux – Laryngopharyngeal reflux
HUS – Haemolytic uraemic syndrome	IUD – Intrauterine device	LPA – Lasting power of attorney
Hz – Hertz	IUFD – Intrauterine fetal death	LRTI – Lower respiratory tract infection
HZV – Herpes zoster virus	IUGR – Intrauterine growth restriction	LSBP – Lying & standing blood pressure
IA – Intra-articular	IUI – Intrauterine insemination	LSCS – Lower section caesarean section
IAP – Intra-abdominal pressure	IV – Intravenous	LSD – Lysergic acid diethylamide
IAPT – Improving access to psychological therapies	IVC – Inferior vena cava	LTRA – Leukotriene receptor antagonist
IBD – Inflammatory bowel disease	IVDU – Intravenous drug user	LTs – Leukotrienes
IBS – Irritable bowel syndrome	IVF – <i>In vitro</i> fertilisation	LUQ – Left upper quadrant
IC – Intracranial	IVH – Intraventricular haemorrhage	LUTS – Lower urinary tract symptoms
ICA – Internal carotid artery	Ix – Investigation	LV – Left ventricle
ICD – Implantable cardiac defibrillator	JGA – Juxtaglomerular apparatus	LVEF – Left ventricular ejection fraction
ICH – Intracranial haemorrhage	JIA – Juvenile idiopathic arthritis	LVF – Left ventricular failure
ICP – Intracranial pressure	JVP – Jugular venous pressure	LVH – Left ventricular hypertrophy
ICS – Inhaled corticosteroid	KB – Ketone bodies	m – Month
ICSI – Intracytoplasmic sperm injection	KCl – Potassium chloride	MAB – Monoclonal antibody
ICU – Intensive care unit	LA – Left atrium or Local anaesthetic or Long-acting	MAO(I) – Monoamine oxidase (inhibitor)
ID – Intellectual disability	LABA – Long-acting beta agonist	MART – Maintenance and reliever therapy
IDA – Iron-deficiency anaemia	LACS – Lacunar stroke	MASLD – Metabolic dysfunction-associated steatotic liver disease
IE – Infective endocarditis	LAD – Left anterior descending artery	MBT – Mentalisation-based therapy
IESS – Infantile epileptic spasms syndrome	LAMA – Long-acting muscarinic antagonist	MC – Mineralocorticoid
	LARC – Long-acting reversible contraception	MC&S – Microscopy, culture and sensitivities
	LBBB – Left bundle branch block	MC twins – Monochorionic twins
	LBD – Lewy body dementia	MCA – Mental Capacity Act or Middle cerebral artery
	LBW – Low birth weight	

MCDA – Monochorionic, diamniotic	MVP – Mitral valve prolapse	NSCLC – Non-small cell lung cancer
mcg – Microgram	Mx – Management	NSTEMI – Non-ST-elevation myocardial infarction
MCH – Mean corpuscular haemoglobin	MZ twins – Monozygotic twins	NT – Nuchal translucency
MCL – Medial collateral ligament	N/n. – Nerve	NTD – Neural tube defect
MCMA – Monochorionic monoamniotic	N&V – Nausea & vomiting	NVD – Normal vaginal delivery
MCP – Metacarpophalangeal	N₂O – Nitrous oxide	NVP – Nausea & vomiting in pregnancy
MCPJ – Metacarpophalangeal joint	NA – Noradrenaline	O/E – On examination
MCS – Microscopy, culture and sensitivity	Na – Sodium	OA – Occipito-anterior or Osteoarthritis
MCV – Mean corpuscular volume	NAAION – Non-arteritic anterior ischaemic optic neuropathy	OAB – Overactive bladder
MDMA – 3,4-methylenedioxy-methamphetamine	NAAT – Nucleic acid amplification test	OAE – Otoacoustic emissions
MDT – Multidisciplinary team	NAC – N-acetylcysteine	OCD – Obsessive-compulsive disorder
Mg – Magnesium	NACT – Neoadjuvant chemotherapy	OCP – Oral contraceptive pill
MG – Myasthenia gravis	NAET – Neoadjuvant endocrine therapy	OD – Once a day
MgSO₄ – Magnesium sulphate	NAFLD – Non-alcoholic fatty liver disease	OGD – Oesophagogastrroduodenoscopy
MGUS – Monoclonal gammopathy of unknown significance	NAI – Non-accidental injury	OGTT – Oral glucose tolerance test
MH – Malignant hyperthermia	NaSSA – Noradrenergic and specific serotonergic antidepressants	OHSS – Ovarian hyperstimulation syndrome
MHA – Mental Health Act	NATT – Neoadjuvant targeted therapy	OME – Otitis media externa or Otitis media with effusion
MHC – Mean haematocrit content	NBM – Nil by mouth	OP – Occipito-posterior or Osteoporosis
MHRA – Medicines and Healthcare products Regulatory Agency	NCS – Nerve conduction study	OPG – Orthopantomogram
MI – Myocardial infarction	Neb – Nebuliser	ORT – Oral rehydration therapy
min – Minute	NEC – Necrotising enterocolitis	OSA – Obstructive sleep apnoea
MMF – Mycophenolate mofetil	NEWS – National Early Warning Score	Osm – Osmolality
MMSE – Mini-Mental State Exam	NF/NF1/NF2 – Neurofibromatosis /type 1/ type 2	OT – Occipito-transverse or Occupational therapist
MND – Motor neurone disease	NG – Nasogastric	OTC – Over the counter
MOAB – Monoamine oxidase B	NHL – Non-Hodgkin lymphoma	PA – Posterior-anterior
MoCA – Montreal Cognitive Assessment	NICE – National Institute for Health and Care Excellence	PACS – Partial anterior circulation stroke
MOI – Mechanism of injury	NICU – Neonatal intensive care unit	PAD – Peripheral arterial disease
MPN – Myeloproliferative neoplasms	NIPE – Newborn & infant physical examination	PAL – Physical activity level
MR – Mitral regurgitation or Modified release	NIPPV – Non-invasive positive pressure ventilation	PAPP-A – Pregnancy-associated plasma protein A
MRC – Medical Research Council	NIV – Non-invasive ventilation	PASI – Psoriasis Area & Severity Index
MRCP – Magnetic resonance cholangiopancreatography	NMBA – Neuromuscular blocking agent	PBC – Primary biliary cholangitis
MRI – Magnetic resonance imaging	NMD – Neuromuscular disorder	PCA – Posterior cerebral artery
MRSA – Methicillin-resistant <i>Staphylococcus aureus</i>	NMDA – N-methyl-D-aspartate	PCB – Post-coital bleeding
MS – Mitral stenosis or Multiple sclerosis	NMJ – Neuromuscular junction	PCI – Percutaneous coronary intervention
MSCC – Metastatic spinal cord compression	NMS – Neuroleptic malignant syndrome	PCKD – Polycystic kidney disease
MSE – Mental state exam	(N)NRTI – (Non)-nucleoside reverse transcriptase inhibitor	PCL – Posterior cruciate ligament
MSK – Musculoskeletal	NO – Nitrous oxide	PCNL – Percutaneous nephrolithotomy
MSU – Mid-stream urine	NOF – Neck of femur	PCO – Polycystic ovaries
MSUM – Monosodium urate monohydrate	NPDR – Non-proliferative diabetic retinopathy	PCOS – Polycystic ovarian syndrome
MTPJ – Metatarsophalangeal joint	NRM – Non-rebreather mask	PCP – <i>Pneumocystis</i> pneumonia
MTX – Methotrexate	NSAID – Non-steroidal anti-inflammatory drug	PCR – Polymerase chain reaction
MUAC – Mid-upper arm circumference		PCV – Packed cell volume or Pneumococcal conjugate vaccine
MUST – Malnutrition Universal Screening Tool		PD – Parkinson's disease or Personality disorder

PDA – Patent ductus arteriosus	PPH – Postpartum haemorrhage	RF – Respiratory failure or Rheumatoid factor or Risk factor
PDD – Parkinson's disease dementia	PPI – Proton pump inhibitor	RFT – Renal function test
PDR – Proliferative diabetic retinopathy	PPM – Permanent pacemaker	Rh – Rhesus
PDT – Photodynamic therapy	PPP – Postpartum psychosis	RHF – Right heart failure
PE – Pulmonary embolism	PPROM – Premature prelabour rupture of membranes	RHS – Right-hand side
PEA – Pulseless electrical activity	PR – Per rectum	RIF – Right iliac fossa
PEF – Peak expiratory flow	PRN – <i>Pro re nata</i> (as required)	RIG – Radiologically inserted gastrostomy
PEG – Percutaneous endoscopic gastrostomy	PROM – Prelabour rupture of membranes	RL CCB – Rate-limiting calcium channel blocker
PET – Positron emission tomography	PRV – Polycythaemia rubra vera	RNP – Ribonucleoprotein
PFMT – Pelvic floor muscle training	PSA – Prostate-specific antigen	ROM – Range of movement or Rupture of membranes
PFO – Patent foramen ovale	PsA – Psoriatic arthritis	ROSC – Return of spontaneous circulation
PFTs – Pulmonary function tests	PSC – Primary sclerosing cholangitis	RPE – Retinal pigment epithelium
PG – Prostaglandin	PSGN – Post-streptococcal glomerulonephritis	RPOC – Retained products of conception
PGD – Pre-implantation genetic diagnosis	PSHx – Past surgical history	RR – Respiration rate
PGS – Pre-implantation genetic screening	PT – Physiotherapy or Prothrombin time	RRT – Renal replacement therapy
PGs – Prostaglandins	PTA – Percutaneous transluminal angioplasty or Pure tone audiometry	RSV – Respiratory syncytial virus
PHx – Past history	PTH – Parathyroid hormone	RTA – Renal tubular acidosis or Road traffic accident
PI – Protease inhibitor	PTH-rp – Parathyroid hormone-related protein	RUQ – Right upper quadrant
PICC – Peripherally inserted central catheter	PTSD – Post-traumatic stress disorder	RV – Right ventricle
PICU – Paediatric intensive care unit	PUD – Peptic ulcer disease	RVF – Right ventricular failure
PID – Pelvic inflammatory disease	PUFR – Perfect use failure rate	s – Second
PIP – Proximal interphalangeal	PUJ – Pelvic–ureteric junction	SA – Short-acting or Surface area
PIPJ – Proximal interphalangeal joint	pulm. – Pulmonary	SABA – Short-acting beta agonist
PK – Pyruvate kinase	PV – Per vagina	SAH – Subarachnoid haemorrhage
PKD – Polycystic kidney disease	PVD – Peripheral vascular disease	SALT – Speech and language therapy
PKU – Phenylketonuria	PVT – Portal vein thrombosis or Pulseless ventricular tachycardia	SAMA – Short-acting muscarinic antagonist
PLA₂ – Phospholipase A ₂ receptor	QDS – Four times a day	SAN – Spinal accessory nerve
Plt – Platelets	qFIT – Quantitative faecal immunochemical test	SB – Small bowel
Pm – Polymyositis	QoL – Quality of life	SBO – Small bowel obstruction
PMB – Post-menopausal bleeding	r/o – Risk of	SBP – Spontaneous bacterial peritonitis or Systolic blood pressure
PMC – Percutaneous mitral balloon commissurotomy	R/V – Review	SC – Subcutaneous
PMF – Primary myelofibrosis	RA – Rheumatoid arthritis or Right atrium	SCA – Sickle cell anaemia or Subclavian artery
PMH – Past medical history	RAAS – Renin–angiotensin–aldosterone system	SCA/D – Sickle cell anaemia/disease
PMR – Polymyalgia rheumatica	RAI – Radioactive iodine	SCC – Squamous cell carcinoma
PMS – Premenstrual syndrome	RAPD – Relative afferent pupillary defect	SCD – Sickle cell disease
PND – Paroxysmal nocturnal dyspnoea	RAS – Renal artery stenosis	SCID – Severe combined immunodeficiency
PNH – Paroxysmal nocturnal haemoglobinuria	RBBB – Right bundle branch block	SCLC – Small cell lung cancer
PNS – Peripheral nervous system	RBC – Red blood cell	SCV – Subclavian vein
PO – (<i>per ora</i>) Orally	RCC – Renal cell carcinoma	SD – Standard deviation
PO₄ – Phosphate	RDS – Respiratory distress syndrome	SE – Side-effect
POC – Package of care	re – Regarding	SFH – Symphysial fundal height
POCS – Posterior circulation stroke	REM – Rapid eye movement	SFJ – Saphenofemoral junction
PONV – Post-operative nausea & vomiting	R-F – Radio-femoral	SGA – Small for gestational age
POP – Progesterone-only contraceptive pill		SGLT2 – Sodium-glucose transport protein 2
POST – Postoperative sore throat		
PPD – Postpartum depression		

SHO – Senior house officer	TBSA – Total body surface area	U&Es – Urea & electrolytes
SI – Small intestine	TCA – Tricyclic antidepressant	U(L/R)SE – Upper (left/right) sternal edge
SIADH – Syndrome of inappropriate antidiuretic hormone secretion	TCC – Transitional cell carcinoma	UA – Unstable angina
SIJ – Sacroiliac joint	TDS – Three times a day	UC – Ulcerative colitis
SJS – Stevens–Johnson syndrome	TEN – Toxic epidermal necrolysis	UCBR – Unconjugated bilirubin
SJW – St John's wort	TENS – Transcutaneous electrical nerve stimulation	UKMEC – UK Medical Eligibility Criteria for Contraceptive Use
SL – Sublingual	TEP – Treatment escalation plan	UMN – Upper motor neurone
SLE – Systemic lupus erythematosus	TFT – Thyroid function test	UO – Urine output
SLNB – Sentinel lymph node biopsy	Tg(Ab) – Thyroglobulin (antibody)	UPA – Ulipristal acetate
SMA – Superior mesenteric artery or Smooth muscle antibody	TGA – Transposition of the great arteries	UPSI – Unprotected sexual intercourse
SMV – Superior mesenteric vein	TGs – Triglycerides	USC – Urgent suspected cancer
SNHL – Sensorineural hearing loss	THA – Total hip arthroplasty	URT – Upper respiratory tract
SNRI – Selective noradrenaline reuptake inhibitor	THC – Tetrahydrocannabinol	URTI – Upper respiratory tract infection
SNS – Sympathetic nervous system	TIA – Transient ischaemic attack	US – Ultrasound
SOB – Shortness of breath	TIBC – Total iron-binding capacity	USC – Urgent suspected cancer
SOL – Space-occupying lesion	TIPS – Transjugular intrahepatic portosystemic shunt	USS – Ultrasound scan
SPF – Sun protection factor	TIVA – Total intravenous anaesthesia	UTI – Urinary tract infection
SpO₂ – Oxygen saturation	TLC – Total lung capacity	UVA – Ultraviolet A
SR – Sustained release	TM – Tympanic membrane	UVB – Ultraviolet B
SSMDT – Specialised Skin Multidisciplinary Team	TMJ – Temporomandibular joint	VBAC – Vaginal birth after caesarean section
SSRI – Selective serotonin reuptake inhibitor	TNF – Tumour necrosis factor	VBG – Venous blood gas
SSSS – Staphylococcal scalded skin syndrome	TNM – Tumour, nodes, metastases	VC – Vocal cord
STEMI – ST-elevation myocardial infarction	TOE – Transoesophageal echo	VDRL – Venereal Disease Research Laboratory
STI – Sexually transmitted infection	TOF – Tetralogy of Fallot	VE – Vaginal examination
SUFE – Slipped upper femoral epiphysis	TOP – Termination of pregnancy	VEGF – Vascular endothelial growth factor
SV – Stroke volume	TPMT – Thiopurine methyltransferase	VEP – Visual evoked potential
SVC – Superior vena cava	TPO – Thyroid peroxidase	VF – Ventricular fibrillation or Visual field
SVCO – Superior vena cava obstruction	TPO(Ab) – Thyroid peroxidase (antibody)	VHL – Von Hippel–Lindau disease
SVR – Systemic vascular resistance	TPR – Total peripheral resistance	VIN – Vulval intraepithelial neoplasia
SVT – Supraventricular tachycardia	TR(Ab) – Thyroid receptor (antibody)	vit – Vitamin
Sx – Symptoms	TRALI – Transfusion-related acute lung injury	VLBW – Very low birth weight
T1DM – Type 1 diabetes mellitus	TSAT – Transferrin saturation	VO crises – Vaso-occlusive crises
T1RF – Type 1 respiratory failure	TSH – Thyroid-stimulating hormone	VSD – Ventricular septal defect
T2DM – Type 2 diabetes mellitus	TSS – Toxic shock syndrome	VT – Ventricular tachycardia
T2RF – Type 2 respiratory failure	TTE – Trans-thoracic echo	VTE – Venous thromboembolism
TA – Tricuspid atresia	tTG – Tissue transglutaminase	VUJ – Vesico-ureteric junction
TACO – Transfusion-associated circulatory overload	TTN – Transient tachypnoea of the newborn	VUR – Vesicoureteric reflux
TACS – Total anterior circulation stroke	TPP – Thrombotic thrombocytopenic purpura	vWD – von Willebrand disease
TAVI/TAVR – Transcatheter aortic valve implantation / replacement	TUFR – Typical use failure rate	VZV – Varicella zoster virus
TB – Tuberculosis	TURBT – Transurethral resection of bladder tumour	W – Week
TBI – Toe–brachial index	TURP – Transurethral resection of prostate	WBC – White blood cell
	TV – Transvaginal	WCC – White cell count
	Tx – Treatment	WHO – World Health Organization
	TXA – Tranexamic acid	WOB – Work of breathing
		y – Year

How to use this book

Although this book is a valuable resource on its own, **the greatest benefit** will be gained when it is used alongside its parent books: **the Medical Student Revision Guides: General Medicine & Surgery and Clinical Specialties**.

Book chapters

For ease of navigation, **chapters within this book are ordered alphabetically**.

The **chapter colour matches the colour used for its corresponding chapter in the parent books** (e.g. the cardiology chapter in this book and in the *General Medicine & Surgery* revision guide are both light green).

Alongside an explanation of how to reach the correct answer, each set of questions **links back to the relevant pages in the accompanying *Medical Student Revision Guide***, allowing you to revisit that topic in more detail if required.

Book questions

The questions in this book can be completed in any order and are grouped into chapters based on clinical specialty.

Questions are designed to **mirror the format of the MLA multiple-choice written exam**, with all of the information presented within the question stem, followed by five multiple choice answer options.

At the end of every chapter the answers, together with **a thorough explanation of how to reach each answer**, are provided. These explanations use **evidence-based strategies to support clinical reasoning**.

Explanations draw focus to important epidemiological factors, significant positive and negative symptoms, and relevant risk factors.

Colour-coded highlighting makes it easy to pick out these key features in the question stem and build your clinical reasoning skills.

- **Patient demographics** are highlighted in **yellow**
- **Important positive findings** are highlighted in **green**
- **Important negative findings** are highlighted in **blue**
- **Relevant risk factors and associations** are highlighted in **purple**

Note that occasionally the explanation structure will differ from this format, to allow for a wider variety of question types

This process prompts '**deliberate reflection**' and it is advised that, even if a correct answer is immediately obvious, you ask yourself 'why' that answer is correct. '**Self-explaining**' your thought process will consolidate your underlying knowledge of pathophysiology, and develop your critical thinking and diagnostic skills, above and beyond just factual recall.

The final chapter comprises questions from a range of specialties, to further test your knowledge without any prior clue regarding the topic. The answers and explanations for these appear on the Resources tab at www.scionpublishing.com/UKMLA.

Book content

This book has been designed as a revision resource and, whilst the information has been checked by specialists in each field to ensure accuracy at time of writing, it should **never be used in the place of clinical guidelines** or local protocols when treating patients in the clinical environment.

Furthermore, **exam questions are often written based on typical 'textbook' presentations** of pathologies, and therefore many of the questions in this book describe the presence or absence of 'typical' features to guide you to the correct answer. However, it is important to note that in reality, **medicine is rarely so black and white**. Patients do not always present with the typical signs, symptoms or risk factors that are associated with the underlying pathology. **Importantly, the absence of any of these does not necessarily rule out a condition**. It is therefore vital to ensure that in clinical practice your differentials remain broad, and investigations appropriately comprehensive.

You will find that the questions in this book range in difficulty, with some more challenging than would be expected in the MLA. This is to prepare you not only for your exams, but also for work in clinical practice.

02 ANAESTHETICS

SBA questions

Question 1

A fit 30-year-old male is undergoing an open inguinal hernia repair under general anaesthesia. A supraglottic airway is being used. As the surgeon manipulates the peritoneum of the hernial sac, the patient develops inspiratory stridor and the oxygen saturations begin to fall. Paradoxical breathing is noted. Basic airway manoeuvres and adjuncts do not improve the situation.

What is the most likely diagnosis?

- A. Apnoeic episodes
- B. Bronchospasm
- C. Foreign body obstruction of the airway
- D. Laryngospasm
- E. Pulmonary aspiration

Question 2

A 63-year-old male is at his pre-operative appointment before undergoing an elective left hemicolectomy. He is curious about exactly what medications he will be given to achieve anaesthesia, and how they work.

Which of the following is a muscle relaxant used during general anaesthesia?

- A. Fentanyl
- B. Propofol
- C. Remifentanil
- D. Sevoflurane
- E. Rocuronium

Question 3

A 60-year-old male is undergoing an emergency Hartmann's procedure for a perforated colon. The anaesthetist performed a rapid sequence induction. Suxamethonium was used to provide muscle relaxation. Initial observations were HR 60 bpm, BP 130/70 mmHg, O₂ sats 100%, temperature 37.0°C. Around 30 minutes into the operation, the anaesthetist notices a worsening sinus tachycardia (HR >130 bpm) mild hypotension (BP 100/60 mmHg), an elevated end-tidal CO₂ (ET CO₂ >7.5 kPa), and elevated patient temperature (40°C). The surgeon notices some muscle rigidity.

What is the most likely diagnosis?

- A. Allergic reaction to one of the anaesthetic agents
- B. Autonomic response due to inadequate anaesthesia
- C. Malignant hyperthermia
- D. Neuroleptic malignant syndrome
- E. Sepsis

Question 4

A 32-year-old female is undergoing an emergency appendicectomy. She previously suffered severe post-operative nausea and vomiting (PONV) after a general anaesthetic for routine dental extractions. She has no medical conditions, does not smoke, and has no known drug allergies.

Which of the following approaches is most likely to reduce symptoms of PONV in this patient?

- A. Avoiding steroids
- B. Inhaled anaesthetic agents
- C. Opioid analgesia
- D. Total intravenous anaesthesia
- E. Using nitrous oxide

Answers to questions

Question 1

A fit 30-year-old male is undergoing an open inguinal hernia repair under general anaesthesia. A supraglottic airway is being used. As the surgeon manipulates the peritoneum of the hernial sac, the patient develops inspiratory stridor and the oxygen saturations begin to fall. Paradoxical breathing is noted. Basic airway manoeuvres and adjuncts do not improve the situation.

What is the **most likely** diagnosis?

Correct answer: D. Laryngospasm

HOW to reach the correct answer

All answers are possible, but clues in the question guide us to which is the **most likely**.

Patient demographics – all of the listed answers could occur in patients undergoing general anaesthesia (GA). However, laryngospasm is typically more common in younger age groups, such as this patient.

Positive clinical signs and symptoms – this patient has suddenly desaturated and developed stridor whilst under GA. There is also paradoxical breathing, which is where the chest wall moves in the opposite way to normal respiration (i.e. chest wall moves in with inspiration, and out with expiration). All these features are signs of acute respiratory distress. However, the key is that this appears to have been triggered by manipulation of the peritoneal sac. This is most in keeping with laryngospasm, a primitive reflex designed to protect against aspiration. The laryngeal muscles contract, resulting in vocal cord adduction and airway closure. It can be triggered by vagal stimulation (e.g. traction of the peritoneum in this case), in a patient who is under inadequate (too light) anaesthesia.

Negative clinical signs and symptoms – both bronchospasm and aspiration are possible differentials, but would more likely present with wheeze, rather than stridor. Additionally, bronchospasm is often related to an underlying airway condition, such as asthma, of which there is no history here. In apnoeas / breath-holding episodes, a lack of respiratory effort would be noted. In this case, there is paradoxical breathing, which rules out this option. There is no reason to suggest inhalation of a foreign body, and this is unlikely to have happened mid-procedure. Another clue here is that the symptoms do not improve with airway manoeuvres or adjuncts, which is also typical in laryngospasm.

Risk factors and associations – risk factors for laryngospasm include airway sensitivity (this can be caused by asthma, being a smoker and exposure to passive smoke inhalation), gastro-oesophageal reflux disease, obesity and anatomical airway abnormalities.

Question 2

A 63-year-old male is at his pre-operative appointment before undergoing an elective left hemicolectomy. He is curious about exactly what medications he will be given to achieve anaesthesia, and how they work.

Which of the following is a **muscle relaxant** used during general anaesthesia?

Correct answer: E. Rocuronium

HOW to reach the correct answer

We are looking for a **muscle relaxant** from the listed options. This requires a basic knowledge of different drugs used in GA.

Fentanyl is an opioid medication used to achieve the *analgesic* component of GA.

Propofol is an intravenous *hypnotic agent* used for the induction and maintenance of GA.

Remifentanil is an ultra-short-acting, extremely potent opioid medication used to provide the analgesic component of a balanced general anaesthetic.

Given the ECG findings, which of the below options is not a potential management option?

- A. Carotid sinus massage
- B. IV adenosine
- C. IV amiodarone
- D. IV metoprolol
- E. Valsalva manoeuvre

Question 8

A 70-year-old female is pre-alerted to resus as she is having a cardiac arrest. On arrival, the paramedics tell you that she has had a rhythm of PEA with no output for approximately 20 minutes. Her husband is very distressed as his wife is normally fit and well, with her only medication being a statin at night. Other than some leg pain for the past 2 days, she had not complained of any other symptoms leading up to her sudden collapse today.

Which of these is the most likely cause of her cardiac arrest?

- A. Cardiac tamponade
- B. Hyperkalaemia
- C. Hypovolaemia
- D. Tension pneumothorax
- E. Thrombosis

Question 9

A 20-year-old female presents to the ED with trouble breathing. She is not able to complete full sentences to give you a clear history. However, her boyfriend tells you that her symptoms have been worsening over the past 6 hours. When you listen to her chest, there is widespread wheeze, but no crackles. Her respiratory rate is 28/min and her oxygen saturations are 93% in room air. She has no peripheral cyanosis or nicotine staining.

What is the most likely diagnosis?

- A. Acute life-threatening asthma
- B. Acute severe asthma
- C. Anaphylaxis
- D. Community-acquired pneumonia (CAP)
- E. Infective exacerbation of COPD

Question 10

A 40-year-old male is brought into the ED with a suspected overdose. His eyes open to pain, and he has pinpoint pupils. He localises to pain when you do a trapezius squeeze. He is only vocalising sounds rather than words, and so he cannot tell you what he has taken. His respiratory rate is 8/min. His blood pressure is 86/56 mmHg. His heart rate is 50 bpm and is in sinus rhythm.

Considering the most likely diagnosis, which of the following medications is most likely to play a role in management?

- A. Deferoxamine
- B. Flumazenil
- C. Fomepizole
- D. *N*-acetylcysteine
- E. Naloxone

Question 11

A 54-year-old female presents to the ED with episodes of feeling shaky and light-headed with accompanying irritability over the last 2 months. She sometimes has palpitations during these episodes. She has not experienced any fevers, chest pain, shortness of breath, or urinary symptoms. The symptoms are worse first thing in the morning, or after exercise. She has a background of T2DM and takes gliclazide. Her ECG today is normal.

Question 9

A 20-year-old female presents to the ED with trouble breathing. She is not able to complete full sentences to give you a clear history. However, her boyfriend tells you that her symptoms have been worsening over the past 6 hours. When you listen to her chest, there is widespread wheeze, but no crackles. Her respiratory rate is 28/min and her oxygen saturations are 93% in room air. She has no peripheral cyanosis or nicotine staining.

What is the **most likely** diagnosis?

Correct answer: B. Acute severe asthma

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is **most likely**.

Patient demographics – a 20-year-old is less likely to have COPD compared to the other diagnoses, so this moves lower down in our list of differentials.

Positive clinical signs and symptoms – she is wheezy, which is most in keeping with either asthma or anaphylaxis. (It is also suggestive of an exacerbation of COPD but, as mentioned above, this is an unlikely differential for such a young patient).

Negative clinical signs and symptoms – she has no nicotine staining, again pointing us away from COPD. There are no crackles on auscultation, reducing the likelihood that this is a CAP. The fact that these symptoms have been worsening over the past 6 hours suggests that this is not anaphylaxis, which would be very sudden in onset.

Risk factors and associations – after narrowing down the diagnosis to acute asthma, we can categorise the severity by looking at certain associated clinical features and observation parameters. A respiratory rate of 28/min, saturations 93%, unable to complete full sentences but not cyanosed, fits with acute **severe** asthma, rather than life-threatening (see table below).

The classification of acute asthma severity, adapted from the British Thoracic Society

	Moderate acute	Acute severe	Life-threatening
Peak flow	50–75% best or predicted	33–50% best or predicted	<33% best or predicted
Saturations	Normal	Normal	<92%
Heart rate	Normal	≥110/min	Arrhythmia
Respiratory rate	Normal	≥25/min	Poor effort / exhaustion – so can be lower than 25
Other signs	No features of acute severe asthma	Inability to complete sentences in one breath No features of life-threatening asthma	$\text{PaO}_2 < 8 \text{ kPa}$ or normal PaCO_2 on ABG Altered consciousness Cyanosis Silent chest

Question 10

A 40-year-old male is brought into the ED with a suspected overdose. His eyes open to pain, and he has pinpoint pupils. He localises to pain when you do a trapezius squeeze. He is only vocalising sounds rather than words, and so he cannot tell you what he has taken. His respiratory rate is 8/min. His blood pressure is 86/56 mmHg. His heart rate is 50 bpm and is in sinus rhythm.

Considering the **most likely** diagnosis, which of the following medications is **most likely** to play a role in management?

Correct answer: E. Naloxone

HOW to reach the correct answer

Stage one: determine the **most likely** diagnosis using clues in the question.

Patient demographics – age and gender do not help to narrow down the possible overdose substance. However, it is important to bear in mind that being male, and middle-aged, both increase risk of suicide.

Positive clinical signs and symptoms – he has pinpoint pupils and a reduced GCS. He is hypotensive, bradycardic and has a reduced respiratory rate. The key here is the pinpoint pupils, which in an exam question should make you think of opiates. The symptoms of reduced respiratory rate and reduced GCS also fit with opiate toxicity, as do bradycardia and hypotension (due to central nervous system depression and vasodilatory effects). If it were just the reduced GCS and decreased respiratory rate, it could also fit with alcohol.

Negative clinical signs and symptoms – he has no tachycardia, which would be expected in overdose with antifreeze (ethylene glycol) or tricyclic antidepressants. He has no abdominal pain or vomiting, which would suggest paracetamol or iron overdose. He has no hyperventilation, which would fit with salicylate overdose. He has no dilated pupils, which would be expected with benzodiazepine use. However, it is important to remember that in mixed overdoses, symptoms may not be so obvious, as multiple substances may have opposing effects.

Risk factors and associations – although there are no specific risk factors mentioned here, it is important to consider the patient's normal prescription medications as possible substances which have been overdosed on. In particular, consider if the patient has access to antidepressants, benzodiazepines, calcium channel blockers or beta-blockers.

This patient has likely overdosed on opiates.

Stage two: determine the medication that is **most likely** to play a role in management.

Naloxone (option E) is used in the management of opiate overdose. It is an opioid antagonist that can rapidly reverse the effects of opiates on the central nervous system. However, it only has a short half-life and therefore repeated doses or an ongoing infusion may be needed to provide ongoing antagonism until the opiate that was overdosed on has been sufficiently cleared from the body.

Considering the other options:

Deferoxamine: for iron overdose.

Flumazenil: for benzodiazepine overdose.

Fomepizole: for antifreeze ingestion.

N-acetylcysteine: for paracetamol overdose.

Question 11

A 54-year-old female presents to the ED with episodes of **feeling shaky and light-headed with accompanying irritability** over the last 2 months. She sometimes has **palpitations** during these episodes. She has not experienced any fevers, chest pain, shortness of breath, or urinary symptoms. The symptoms are worse **first thing in the morning, or after exercise**. She has a background of T2DM and **takes gliclazide**. Her ECG today is normal.

What is the **most likely** diagnosis?

Correct answer: D. Hypoglycaemic episodes

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is **most likely**.

Patient demographics – 54 years old is an unusual age for a first presentation of heart block. (Usually, onset is in patients >60 years old or in patients with other cardiac pathology.)

Positive clinical signs and symptoms – this patient has symptoms of shakiness, light-headedness, and irritability. Intermittent palpitations are also described. These symptoms are quite vague and could be associated with many of our answers, particularly AF, anxiety and hypoglycaemia. Of these three, the shakiness and irritability are most in keeping with hypoglycaemia. The fact that these symptoms are worse in the morning or after exercise (times where blood glucose levels will naturally drop) is also consistent with hypoglycaemia.

Negative clinical signs and symptoms – infection is usually associated with fever, and would have a more acute onset, making this less likely as the diagnosis. Additionally, the patient denies any specific infective symptoms, including shortness of breath or urinary problems. The normal ECG on this

Question 22

A 16-year-old female is admitted to hospital after her mother found her talking to friends that were not there. The mother also reports that she has been repeating words and acting confused. This has been ongoing for two days. There is no history of drugs or alcohol intake, or any head trauma. CT imaging identifies hypodense changes in both temporal lobes.

What is the most likely diagnosis?

- A.** HSV encephalitis
- B.** Intracranial haemorrhage
- C.** MDMA use
- D.** Schizophrenic psychosis
- E.** Wernicke's encephalopathy

Question 23

A 4-year-old boy is referred to neurology clinic, as his mother has noticed that he is frequently falling. There is also a background history of delayed motor milestones. When observing the boy in clinic, it is noted that in order to stand up, he has to walk his hands up his legs. On examination he has a waddling gait with a positive Trendelenburg's sign.

Considering the likely diagnosis, which protein is most likely to be affected?

- A.** Collagen I
- B.** Collagen III
- C.** Desmoglein
- D.** Dystrophin
- E.** Fibrillin

Question 24

A 34-year-old male is admitted to the neurology ward after being diagnosed with Guillain–Barré syndrome. His symptoms started 2 days ago with pins and needles in his feet, followed by ascending, bilateral weakness of the legs, to the point that he is now unable to walk.

What is the single most important parameter to monitor when considering whether he needs ITU admission or high-level monitoring?

- A.** Arterial blood gas (ABG)
- B.** Forced vital capacity (FVC)
- C.** Glasgow Coma Scale (GCS)
- D.** Oxygen saturations
- E.** Respiratory rate

Question 25

A 65-year-old female is admitted to hospital with dizziness and nausea which has been ongoing for the past 12 hours. She describes feeling as if the room is spinning. She has a past medical history of atrial fibrillation, for which she is taking apixaban regularly. Examination shows an ataxic gait and a horizontal nystagmus, fast beating to the left. Head impulse test was negative.

Considering the most likely diagnosis, what is the most appropriate next step in management?

- A.** Aspirin 300 mg
- B.** Discharge with analgesia and prochlorperazine
- C.** Perform the Epley manoeuvre
- D.** Urgent CT head
- E.** Urgent referral to Ophthalmology

This patient most likely has Lambert–Eaton myasthenic syndrome (LEMS).

Stage two: determine what investigation would **confirm** a diagnosis of LEMS.

LEMS is an autoimmune syndrome which has a high paraneoplastic potential. Overall, tumours are identified in about 50% of cases (most commonly small-cell lung cancer). In the remainder, there is an association with other autoimmune disorders, including vitiligo. LEMS is caused by an IgG antibody-mediated autoimmune attack on presynaptic voltage-gated calcium channels. This reduces calcium entry on depolarisation, reducing the numbers of vesicles fusing with the terminal membrane, thus reducing acetylcholine release and neuromuscular transmission. Serological testing can confirm the presence of these autoantibodies. Therefore, **serum anti-P/Q voltage-gated calcium channel antibodies** (option E) is the correct answer.

Considering the other options:

CT thorax abdomen pelvis: this is a very important investigation if LEMS is suspected, due to the strong association with malignancy. However, it is not diagnostic of LEMS itself.

Genetic testing: LEMS is a paraneoplastic, autoimmune condition, rather than a genetic disorder.

MRI head with contrast: the bilateral symptoms make an intracranial event less likely.

Serum anti-acetylcholine receptor antibodies: these are diagnostic for MG.

Question 22

A 16-year-old female is admitted to hospital after her mother found her **talking to friends that were not there**. The mother also reports that she has been **repeating words and acting confused**. This has been ongoing for **two days**. There is **no history of drugs or alcohol intake, or any head trauma**. CT imaging identifies **hypodense changes in both temporal lobes**.

What is the **most likely** diagnosis?

Correct answer: A. HSV encephalitis

HOW to reach the correct answer

All answers are possible, but clues in the question guide us to the **most likely** diagnosis.

Patient demographics – neuropsychological presentations in young patients should prompt consideration of neurodevelopmental, infectious and autoimmune diseases.

Positive clinical signs and symptoms – this young patient is presenting with new acute confusion and potentially hallucinations. It is important to rule out organic causes before assigning these symptoms to drug use or mental health disorders. Additionally, CT imaging shows positive findings, which would not be present if these symptoms were due to acute drug use or a primary psychiatric diagnosis. HSV infection of the CNS presents with acute confusion and memory problems, with HSV encephalitis typically affecting the temporal lobes. If untreated, the infection can progress and cause permanent amnesia and cognitive impairment. Prompt diagnosis and treatment are critical.

Negative clinical signs and symptoms – there is no history of recent trauma to suggest an intracranial haemorrhage, and spontaneous bleeds are less likely to occur in this age group. There is no drug or alcohol history that her family is aware of, so MDMA use is less likely, though a urine toxicology screen remains a sensible test to consider. In reality, it is important to consider covert use of drugs and so a low threshold of suspicion is needed.

Risk factors and associations – bilateral, typically asymmetric temporal lobe changes are typical of HSV encephalitis. CSF analysis is key in confirming the diagnosis.

Question 23

A 4-year-old boy is referred to neurology clinic, as his mother has noticed that he is **frequently falling**. There is also a **background history of delayed motor milestones**. When observing the boy in clinic, it is noted that in order to stand up, he has to **walk his hands up his legs**. On examination he has a **waddling gait** with a positive Trendelenburg's sign.

Considering the **likely** diagnosis, which protein is **most likely** to be affected?

Correct answer: D. Dystrophin

HOW to reach the correct answer

Stage one: identify the **likely** diagnosis using clues in the question.

Patient demographics – young patients presenting with weakness should prompt consideration of underlying genetic disorders that can predispose to neurological or muscle disorders. Both Duchenne and Becker muscular dystrophy are X-linked recessive dystrophinopathies. Duchenne muscular dystrophy presents early in life and is almost always symptomatic by age 5, whereas Becker muscular dystrophy presents later in life, sometimes in childhood, but more frequently in adolescence and adulthood.

Positive clinical signs and symptoms – it is possible to make a spot diagnosis from the handful of positive clinical signs given in the question stem, which are all typical of Duchenne muscular dystrophy. Proximal muscles, such as the hips and thighs, are usually affected first, resulting in difficulty standing up and walking. Young children learn to compensate by using their upper limbs to help raise themselves from the squatting position, which is sometimes described as 'walking their hands up their legs'. This is known as the Gower's manoeuvre. When walking, weakness of the bilateral hip abductors leads to what is called a Trendelenburg gait.

Negative clinical signs and symptoms – no relevant negative symptoms mentioned in this question stem.

Risk factors and associations – Duchenne muscular dystrophy is an X-linked recessive disorder and so predominantly affects the male sex.

This patient most likely has Duchenne muscular dystrophy.

Stage two: determine which protein is **most likely** to be affected.

Both Duchenne and Becker muscular dystrophy result from mutations of the dystrophin gene. Dystrophin is a major muscle cell structural protein which plays an important role in muscular contraction.

Of the two, Becker muscular dystrophy is a milder form of dystrophinopathy, in which the dystrophin protein is not completely absent but may be structurally abnormal or present in smaller amounts.

Question 24

A 34-year-old male is admitted to the neurology ward after being diagnosed with Guillain–Barré syndrome. His symptoms started 2 days ago with pins and needles in his feet, followed by ascending, bilateral weakness of the legs, to the point that he is now unable to walk.

What is the single most important parameter to monitor when considering whether he needs ITU admission or high-level monitoring?

Correct answer: B. Forced vital capacity (FVC)

Explanation: Guillain–Barré syndrome (GBS) is a sensorimotor acute polyradiculoneuropathy that occurs due to an autoimmune response, typically to an antecedent infection. The patient in this case has a typical presentation of GBS, which starts with distal sensory disturbance and progressive weakness of the limbs, usually starting in the legs and then progressing to the upper limbs. In some patients, paralysis can continue to ascend proximally to the diaphragm and/or the bulbar muscles. This can cause ventilatory failure and dysarthria/dysphagia, respectively. Patients with diaphragm paralysis need urgent ventilatory support on ITU.

The most important measure of diaphragmatic and respiratory muscle involvement is the forced vital capacity (FVC). An FVC of $<20\text{ ml/kg}$ has been shown to predict the need for mechanical ventilation (and ITU admission) for patients with GBS. Other important clinical features to consider include the presence of neck weakness and bulbar muscle weakness.

An ABG can be helpful, as a raised $p\text{CO}_2$ suggests inadequate ventilation and therefore neuromuscular respiratory involvement. However, this is typically a late sign. FVC monitoring can detect neuromuscular respiratory involvement earlier, making it more appropriate as a single monitoring parameter.

Question 8

Twin-to-twin transfusion syndrome (TTTS) is a known serious complication of monochorionic diamniotic twin pregnancies as a consequence of unequal blood distribution between the two fetuses.

Which of the following would you not expect to see in the recipient twin?

- A. Cardiac failure
- B. Intrauterine growth restriction (IUGR)
- C. Polycythaemia
- D. Polyhydramnios
- E. Volume overload

Question 9

A woman presents to the Pregnancy Assessment Unit at 37 weeks' gestation, with reduced fetal movements for the past 6 hours. Cardiotocography (CTG) monitoring is carried out as part of the initial assessment. The baseline fetal heart rate is 165 bpm and maternal heart rate is 90 bpm. Accelerations are present and there is no evidence of decelerations. The variability is 10 bpm and there is no evidence of uterine activity.

Which one of the following findings makes this CTG suspicious?

- A. Absence of decelerations
- B. Baseline fetal heart rate of 165 bpm
- C. Maternal heart rate of 90 bpm
- D. Presence of accelerations
- E. Variability of 10 bpm

Question 10

One hour following a normal vaginal delivery at term, a woman has ongoing PV bleeding. Cumulative blood loss is 1 L. She had active management of third stage of labour, and the placenta has been delivered but not yet checked. She sustained a left labial graze and a small 1st-degree tear.

What is the most likely cause of her ongoing bleeding?

- A. 1st-degree tear
- B. Endometritis
- C. Maternal coagulopathy
- D. Retained placental tissue
- E. Uterine atony

Question 11

You are in antenatal clinic and see a 36-year-old woman for her booking visit. She has a BMI of 28 and she has no medical conditions. However, her last pregnancy was complicated by pre-eclampsia which necessitated an induction of labour at 39 weeks. Her sister also had pre-eclampsia during her pregnancy.

Booking bloods show that her haemoglobin is 105 g/L and she is rhesus negative.

Which of the following is the most appropriate antenatal care plan for this patient?

- A. Anti-D at 28 weeks, aspirin 150 mg once daily until 36 weeks, 5 mg folic acid OD
- B. Anti-D at 28 weeks, aspirin 150 mg once daily until 36 weeks, 5 mg folic acid OD, ferrous sulphate 200 mg OD
- C. Anti-D at 28 weeks, aspirin 150 mg once daily until 36 weeks, ferrous sulphate 200 mg OD
- D. Anti-D at 28 weeks, aspirin 75 mg once daily until 36 weeks, ferrous sulphate 200 mg OD
- E. Anti-D at time of booking, aspirin 150 mg once daily until 36 weeks, ferrous sulphate 200 mg OD

Question 12

A patient has a combined screening test done at booking. The results suggest that there is a high risk of her baby having Down syndrome. She decides to undergo invasive diagnostic testing.

Which of the following statements is inaccurate with regard to her options?

- A. Amniocentesis can be carried out earlier than chorionic villus sampling
- B. Amniocentesis involves removal of a sample of amniotic fluid
- C. Amniocentesis is safest when carried out after 15 weeks' gestation
- D. Both amniocentesis and chorionic villus sampling are done with ultrasound guidance
- E. Chorionic villus sampling involves taking a sample of placental cells

Question 9

A woman presents to the Pregnancy Assessment Unit at 37 weeks' gestation, with reduced fetal movements for the past 6 hours. Cardiotocography (CTG) monitoring is carried out as part of the initial assessment. The **baseline fetal heart rate is 165 bpm** and maternal heart rate is 90 bpm. Accelerations are present and there is no evidence of decelerations. The variability is 10 bpm and there is no evidence of uterine activity.

Which **one** of the following findings makes this CTG **suspicious**?

Correct answer: B. Baseline fetal heart rate of 165 bpm

HOW to reach the correct answer

Identifying **one** of the answers as a **suspicious** CTG finding requires a knowledge of the normal features of a CTG. Normal CTG features are:

- **Baseline fetal heart rate:** 110–160 bpm
- **Variability:** 5–25 bpm
- **Accelerations** (increase in baseline heart rate of >15 bpm for <15 s): presence is reassuring and represents the normal activity of the fetal autonomic nervous system
- **Decelerations:** when in sync with contractions, these are a natural response to head compression. If decelerations quickly recover, they are most likely benign and can simply be monitored. Any other deceleration is abnormal and represents hypoxia.

Using the clue in the question, the only feature in this patient's CTG that does not fit with the normal and expected features is the **baseline fetal heart rate of >160 bpm**. Therefore, answer option B is correct. Fetal tachycardia can result from pathologies including chorioamnionitis, anaemia, hypoxia and prematurity.

Question 10

One hour following a normal **vaginal delivery at term**, a woman has **ongoing PV bleeding**. Cumulative blood loss is **1 L**. She had active management of third stage of labour, and the placenta has been delivered but not yet checked. She sustained a left labial graze and a small 1st-degree tear.

What is the **most likely** cause of her ongoing bleeding?

Correct answer: E. Uterine atony

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is **most likely**.

Patient demographics – the cause of the bleed will depend partially on the mode of delivery. For example, tears are more common in instrumental deliveries and in primiparous women. Unfortunately, in this question stem, none of the patient demographics help us in narrowing down our answers.

Positive clinical signs and symptoms – this patient has a significant blood loss (1 L) which is still ongoing at one hour post-delivery. It would be unlikely for a 1st-degree tear to cause this degree of bleeding, making option A less likely. Ongoing blood loss could point towards uterine atony (option E), retained placental tissue (option D) or maternal coagulopathy (option C), so we need to consider which of these three options is most common.

Negative clinical signs and symptoms – endometritis (inflammation or infection of the endometrium) usually presents at least 24 hours after delivery, as opposed to the one hour post-delivery in this case. Endometritis also typically presents with abdominal pain, abnormal discharge or vaginal bleeding. Patients can sometimes be febrile and septic. These clinical signs and symptoms do not fit with this patient's presentation, meaning option B is unlikely.

Risk factors and associations – based on the signs and symptoms, multiple answers are possible (options C, D and E). However, we can determine which of these is most likely by understanding the most common cause of primary postpartum haemorrhage – this is **uterine atony** and is the most likely cause of this patient's ongoing bleeding.

Question 11

You are in antenatal clinic and see a **36-year-old** woman for her booking visit. She has a **BMI of 28** and she has **no medical conditions**. However, **her last pregnancy was complicated by pre-eclampsia** which necessitated an induction of labour at 39 weeks. Her **sister also had pre-eclampsia** during her pregnancy.

Booking bloods show that her haemoglobin is 105 g/L and she is rhesus negative.

Which of the following is the **most appropriate** antenatal care plan for this patient?

Correct answer: C. Anti-D at 28 weeks, aspirin 150 mg once daily until 36 weeks, ferrous sulphate 200 mg OD

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to the **most appropriate** care plan.

Patient demographics – risk in pregnancy will depend on different demographic factors. Increased patient age (>35 years) will increase risk for pre-eclampsia, as is the case here.

Positive clinical signs and symptoms – in this case there are no signs or symptoms to review. However, we are given some of the patient's blood results. These show her to be anaemic and rhesus negative. Our antenatal care plan must reflect these two findings. Oral ferrous sulphate 200 mg OD should be included to manage her anaemia, therefore option A is incorrect. As this mother is rhesus negative, anti-D must be given in order to prevent rhesus haemolytic disease of the newborn. This should be done at 28 weeks, not at the time of booking, therefore option E is incorrect.

Negative clinical signs and symptoms – this patient has no medical conditions that mean high-dose folic acid is indicated (such as diabetes or epilepsy). Although a BMI of 28 puts her in the overweight category, high-dose folic acid is only indicated if BMI is >30. Options A and B are therefore incorrect.

Risk factors and associations – this patient has a personal history and strong family history of pre-eclampsia, putting her in the high-risk group for this condition in her current pregnancy. To reduce the risk, 150 mg aspirin is given OD until 36 weeks. Option D is incorrect, as 75 mg aspirin is too low a dose.

Question 12

A patient has a combined screening test done at booking. The results suggest that there is a high risk of her baby having Down syndrome. She decides to undergo invasive diagnostic testing.

Which of the following statements is **inaccurate** with regard to her options?

Correct answer: A. Amniocentesis can be carried out earlier than chorionic villus sampling

Explanation: amniocentesis is the removal of amniotic fluid via a fine-gauge needle with ultrasound guidance. This is safest after 15 weeks' gestation and carries a 1% miscarriage risk. Chorionic villus sampling involves taking a sample of placental cells via a fine-gauge needle with ultrasound guidance and under local anaesthetic. This is usually carried out at 11–13 weeks' gestation and carries a 1–2% miscarriage risk. As chorionic villus sampling is carried out earlier, it leaves time for the option of termination of pregnancy to be considered.

Question 13

Pre-eclampsia has a number of severe complications for the mother. Magnesium sulphate is used in the management of pre-eclampsia to reduce the risk of one of these complications.

Which complication does treatment with magnesium sulphate **aim to prevent**?

Correct answer: B. Eclampsia

Explanation: eclampsia is a complication of pre-eclampsia that results in grand mal seizures due to cerebral vasospasm. Magnesium sulphate acts as a vasodilator to reverse cerebral vasospasm and therefore prevent/terminate seizures. Some studies also suggest that it protects the blood–brain barrier to reduce cerebral oedema, again reducing seizure risk.

Question 14

During the antenatal ward round with the obstetric consultant, you review a woman admitted with pre-eclampsia.

Which of the following suggests this patient is at an **increased risk** of eclamptic seizure?

Correct answer: E. All of the above

Explanation: pre-eclampsia is diagnosed when BP is >140/90 mmHg after 20 weeks' gestation with associated proteinuria (0.3 mg/24 hours). Mild–moderate pre-eclampsia is asymptomatic. In severe

23

PALLIATIVE CARE

SBA questions

Question 1

A 76-year-old male has stage 4 metastatic lung cancer. He is taking modified-release morphine (Zomorph) 15 mg orally twice a day to control the pain. He remembers being told that he can take a dose of immediate-release oral morphine sulphate (Oramorph), should he experience breakthrough pain between taking his regular Zomorph. However, he is unsure what dose of Oramorph he should take.

What is the most appropriate breakthrough dose of immediate-release morphine sulphate for this patient to take PRN?

- A. 1.5 mg
- B. 2 mg
- C. 5 mg
- D. 6 mg
- E. 10 mg

Question 2

A 50-year-old female, who has breast cancer with spinal metastases, has been admitted to a hospice for end-of-life care. She has been taking modified-release morphine (Zomorph) orally, 60 mg twice a day. In addition, she takes 20 mg of immediate-release morphine sulphate orally, when she experiences breakthrough pain. She has consistently been needing 2 doses of her PRN morphine each day to fully control her pain. She has been tolerating the morphine with no concerning side-effects. She is now unable to take medications orally and a decision is made to start a syringe driver (continuous subcutaneous infusion (CSI)) to deliver medications subcutaneously over 24 hours. Your consultant asks you to prescribe the syringe driver.

What is the most appropriate prescription of analgesia for the syringe driver?

- A. 120 mg oxycodone
- B. 60 mg morphine sulphate
- C. 60 mg oxycodone
- D. 80 mg morphine sulphate
- E. 160 mg morphine sulphate

Question 3

An 81-year-old female is in hospital receiving end-of-life care. She is felt to be in the last few days of her life. She is noted by the medical team to be spending increasing amounts of time asleep and sometimes has a reduced consciousness level. She is declining food and drink. You have seen her on the ward round and her family are concerned that she is making a rattling noise with her breathing, and at times she has appeared distressed by this. The nurse has already given the patient a dose of subcutaneous midazolam to help with agitation.

What additional medication could you prescribe as a single immediate dose (stat dose), which may relieve the patient's noisy breathing?

- A. Carbocisteine 500 mg oral
- B. Hyoscine butylbromide 20 mg oral
- C. Hyoscine butylbromide 20 mg subcutaneous
- D. Levomepromazine 6.25 mg subcutaneous
- E. Morphine 2.5 mg subcutaneous

Answers to questions

Question 1

A 76-year-old male has stage 4 metastatic lung cancer. He is taking modified-release morphine (Zomorph) 15 mg orally twice a day to control the pain. He remembers being told that he can take a dose of immediate-release oral morphine sulphate (Oramorph), should he experience breakthrough pain between taking his regular Zomorph. However, he is unsure what dose of Oramorph he should take.

What is the **most appropriate** breakthrough dose of immediate-release morphine sulphate for this patient to take PRN?

Correct answer: C. 5 mg

HOW to reach the correct answer

All answers are possible, but the clue in the question helps to guide us to which is **most appropriate**.

The breakthrough dose of morphine sulphate can be calculated in two steps:

1. **Calculate the total daily (24-hour) dose of modified-release morphine** that the patient is taking. In this case, he takes 15 mg twice daily Zomorph, which is equivalent to 30 mg in 24 hours (15 mg + 15 mg). Remember that PRN dosing is based on the total amount of morphine sulphate used in one day, not each individual dose of modified-release morphine sulphate taken.
2. **Calculate the PRN dose of immediate-release morphine sulphate** which is 1/10th to 1/6th of the total daily dose. $30\text{ mg}/10 = 3\text{ mg}$ and $30\text{ mg}/6 = 5\text{ mg}$. So, the appropriate PRN dose for this patient is between 3 mg and 5 mg.

Question 2

A 50-year-old female, who has breast cancer with spinal metastases, has been admitted to a hospice for end-of-life care. She has been taking modified-release morphine (Zomorph) orally, 60 mg twice a day. In addition, she takes 20 mg of immediate-release morphine sulphate orally, when she experiences breakthrough pain. She has consistently been needing 2 doses of her PRN morphine each day to fully control her pain. She has been tolerating the morphine with no concerning side-effects. She is now unable to take medications orally and a decision is made to start a syringe driver (continuous subcutaneous infusion (CSI)) to deliver medications subcutaneously over 24 hours. Your consultant asks you to prescribe the syringe driver.

What is the **most appropriate** prescription of analgesia for the syringe driver?

Correct answer: D. 80 mg morphine sulphate

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is the **most appropriate**.

The answer can be reached through three steps:

Identify the appropriate analgesia type – the patient is currently taking morphine, and from the information we are given, she is tolerating it well and there are no contraindications to continuing this. We can therefore eliminate answers with an alternative analgesia formulation (oxycodone).

Calculate the total daily dose of morphine sulphate the patient is currently taking – the question states she is taking 60 mg morphine sulphate modified-release twice daily, which is equivalent to 120 mg in 24 hours. She is also taking 20 mg PRN immediate-release morphine sulphate twice daily, which is the equivalent of 40 mg in 24 hours. The total daily dose of morphine is therefore $120\text{ mg} + 40\text{ mg} = 160\text{ mg}$.

Convert from oral to subcutaneous morphine sulphate requirements – the patient is going to have a syringe driver as the oral route is no longer appropriate. To convert from oral to subcutaneous morphine sulphate, divide the total oral dose by 2 (subcutaneous morphine is twice as strong as oral morphine). $160\text{ mg}/2 = 80\text{ mg subcutaneous morphine sulphate required daily in the syringe driver.}$

Question 21

A 29-year-old mother presents 4 days postpartum with emotional lability, tearfulness and low mood. She reports struggling with a brief period of 'emotional problems' after her first child but denies any recent mental health issues. She also denies any psychotic features and appears orientated to time, place and person.

What is the most appropriate management?

- A.** Admit to Mother and Baby Unit
- B.** CBT
- C.** ECT
- D.** Sertraline
- E.** Watch and wait

Question 22

You are the on-call psychiatry SHO. You have been asked to review a 22-year-old male patient in the ED. The patient appears unkempt and fearful, stating that MI6 have been following him. He says he knows they are following him because he read about a celebrity dying in the newspaper. He has also heard MI6 talking about him at night. He reports that this has been happening for the last 2 months. He has no insight into his mental health. He has shown no symptoms of catatonia and there is nothing to suggest any recent drug use.

Which of the following is the most appropriate first-line treatment for this patient?

- A.** ECT
- B.** Fluoxetine
- C.** Lamotrigine
- D.** Risperidone
- E.** Sodium valproate

Question 23

A 34-year-old patient is admitted to the ward and detained under the Mental Health Act. She has presented with a history of recurrent depression and her parents tell you that they have never seen her this bad previously. She has been trialled on 2 different antidepressants prior to admission but continued to deteriorate. She is now no longer eating or drinking and has lost a significant amount of weight. She has no known history of physical health problems.

What is the most appropriate management?

- A.** Augment with lithium
- B.** Commence CBT
- C.** Commence flupentixol depot
- D.** Commence olanzapine
- E.** ECT

Question 24

A 24-year-old female attends a working age psychiatry clinic. She reports feelings of extreme elation and tells you of a particular episode where she acted recklessly and lost significant amounts of money gambling. At the same time that this happened, she felt high in energy and did not feel the need to sleep for over a week. She goes on to describe hearing voices, which have been telling her that she is special. When asked specifically, the patient tells you that she had a period of low mood a couple of years ago but did not require any medical treatment. She also tells you that her mum had a history of 'manic depression'. The patient denies any feelings of paranoia or of being controlled by others.

What is the most likely diagnosis?

- A.** Acute mania
- B.** Bipolar affective disorder
- C.** Emotionally unstable personality disorder
- D.** Schizoaffective disorder
- E.** Schizophrenia

Explanation: the time period of this presentation (<10 days postpartum) fits best with baby blues. This doesn't require any treatment, meaning that watch and wait is the most appropriate management at this stage. However, it is important to monitor the patient to see if she subsequently goes on to develop postpartum depression.

Question 22

You are the on-call psychiatry SHO. You have been asked to review a 22-year-old male patient in the ED. The patient appears **unkempt and fearful**, stating that **MI6** have been following **him**. He says **he knows they are following him because he read about a celebrity dying in the newspaper**. He **has also heard MI6 talking about him at night**. He reports that this has been happening for the last **2 months**. He has no insight into his mental health. He has shown **no symptoms of catatonia** and there is nothing to suggest **any recent drug use**.

Which of the following is the **most appropriate** first-line treatment for this patient?

Correct answer: D. Risperidone

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is **most appropriate**.

Patient demographics – mental health conditions can affect all ages, genders and ethnicities, but certain conditions are more likely amongst certain demographics, and we should keep this in mind when considering the most likely diagnosis for this 22-year-old male.

Positive clinical signs and symptoms – the patient is presenting with delusional perceptions (perceiving the news of a celebrity dying to mean that MI6 are following him), auditory hallucinations (hearing MI6 talking about him) and poor self-care. The first two symptoms are examples of Schneider's first-rank symptoms and are therefore suggestive of schizophrenia. The poor self-care is in keeping with this diagnosis. The fact that these symptoms have been present for 2 months makes an acute cause of psychosis (e.g. drug-induced) less likely.

Negative clinical signs and symptoms – this patient does not have any catatonic symptoms, meaning there is no current indication for ECT. As the patient has not had drugs recently, he is less likely to be suffering from drug-induced psychosis, for which pharmacological management is not always indicated.

Risk factors and associations – the most notable risk factor is that the patient is a young male, which increases the risk of certain mental health disorders, including schizophrenia.

Explanation: once we have determined that this patient is presenting with a new diagnosis of schizophrenia, we can determine the most appropriate management – this would be a trial of an antipsychotic. Risperidone is the only first-line antipsychotic medication listed, thus making it the only appropriate option at this point. Although sodium valproate and lamotrigine could potentially be used as adjuncts in the management of schizophrenia, they are not first-line options. Fluoxetine is an antidepressant. ECT is only indicated in severe treatment of refractory depression, catatonic states, and occasionally in the manic phase of bipolar disorder.

Question 23

A 34-year-old patient is admitted to the ward and detained under the Mental Health Act. She has presented with a history of **recurrent depression** and her parents tell you that they have never seen her this bad previously. She has been trialled on **2 different antidepressants** prior to admission but continued to deteriorate. She is now **no longer eating or drinking** and **has lost a significant amount of weight**. She has no known history of physical health problems.

What is the **most appropriate** management?

Correct answer: E. ECT

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is **most appropriate**.

Patient demographics – the patient is a 34-year-old female, which affects the decision of how early to use certain management options.

Positive clinical signs and symptoms – the patient is suffering from severe depression which has resulted in her no longer eating or drinking. This severity, combined with the lack of oral intake, immediately means oral medication will be unsuitable. Similarly, CBT is not appropriate as an emergency treatment for such severe depression.

Negative clinical signs and symptoms – the patient does not disclose any physical health issues which may prevent them from having certain treatments.

Risk factors and associations – the patient has previously trialled 2 different antidepressants, but neither of them has helped, which suggests severe, treatment-resistant depression, for which alternative therapies may be required.

Explanation: the most appropriate management is ECT because the patient is suffering from severe, treatment-resistant depression. She is not eating or drinking and therefore requires emergency management with a non-oral therapy. Flupentixol depot could be used in such cases. However, ECT would be more appropriate because it often results in faster and more significant improvements in symptoms.

Question 24

A 24-year-old female attends a working age psychiatry clinic. She reports feelings of extreme elation and tells you of a particular episode where she acted recklessly and lost significant amounts of money gambling. At the same time that this happened, she felt high in energy and did not feel the need to sleep for over a week. She goes on to describe hearing voices, which have been telling her that she is special. When asked specifically, the patient tells you that she had a period of low mood a couple of years ago but did not require any medical treatment. She also tells you that her mum had a history of 'manic depression'. The patient denies any feelings of paranoia or of being controlled by others.

What is the **most likely** diagnosis?

Correct answer: B. Bipolar affective disorder

HOW to reach the correct answer

All answers are possible, but the clues in the question guide us to which is **most likely**.

Patient demographics – certain conditions are more likely amongst certain demographics, and we should keep this in mind when considering the most likely diagnosis for this 24-year-old female.

Positive clinical signs and symptoms – the patient reports extreme elation, energy, lack of sleep and reckless behaviour. The voices telling her that she is special are an example of 'grandiose delusions'. All of these are features of mania. The delusions and fact that symptoms lasted over 1 week are suggestive of mania rather than hypomania. The patient also reports one episode of depression in the past. This points us towards a diagnosis of bipolar affective disorder, rather than pure mania.

Negative clinical signs and symptoms – the patient denied any paranoia or delusions of control, and so this makes a diagnosis of schizophrenia or schizoaffective disorder less likely.

Risk factors and associations – the patient has a family history of manic depression (the original name for bipolar affective disorder). Bipolar affective disorder is more likely to develop in those who have a first-degree relative with the condition. Onset is usually in early adulthood, which again fits with this case.

Explanation: the most likely diagnosis is bipolar affective disorder, supported by recent symptoms of mania combined with an episode of depression in the past. It is important to ask about depressive episodes in patients presenting with mania, because long-term treatment for mania differs from that of mixed states of mania and depression (the latter are riskier and more difficult to manage).

31

‘TEST YOURSELF’ QUESTIONS

Question 1

A 45-year-old woodworker presents to the ED with a 24-hour history of a painful, erythematous left index finger. He reports removing a splinter from the same digit 2 days ago.

Which of these examination findings is least predictive of an infection in the flexor sheath?

- A. Finger held in slight flexion
- B. Fusiform swelling of digit
- C. Pain on passive extension
- D. Palpable tense collection in the distal finger pulp
- E. Tenderness on palpation along flexor sheath

Question 2

A 13-year-old boy attends his GP practice with a 6-week history of pain in the left groin and increasing difficulty walking. On examination, he is systemically well, has an antalgic gait, limited range of flexion and internal rotation of the hip. His weight is in the 90th percentile for his age. There is no history of trauma, and his past medical history is unremarkable except for a chest infection 3 weeks ago.

What is the most likely diagnosis?

- A. Osgood–Schlatter disease
- B. Perthes disease
- C. Septic arthritis of the hip
- D. Slipped upper femoral epiphysis
- E. Transient synovitis

Question 3

A 62-year-old Caucasian male presents to his GP with a concerning skin lesion on his shoulder. He has a 2.5 cm-wide flat, dark brown lesion with irregular asymmetric borders. It has doubled in size over the last 3 years.

Which of these is the most likely diagnosis?

- A. Acral lentiginous melanoma
- B. Amelanotic melanoma
- C. Benign melanocytic naevus
- D. Nodular melanoma
- E. Superficial spreading melanoma

Question 4

A 76-year-old female, with a past medical history of diabetes and cauda equina syndrome, is admitted to hospital with a urinary tract infection. She mobilises using a wheelchair and has a patch of non-blanching erythema on her ischial tuberosity. There is no history of trauma.

Which of these systems would help establish her risk of developing the skin lesion described?

- A. Child–Pugh score
- B. Gustilo–Anderson classification
- C. Salter–Harris classification
- D. Tscherne classification
- E. Waterlow score