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Foreword
It gives me great pleasure to introduce this important book written by colleagues who 
exemplify  what is achievable in a successful clinical academic career.  For medical 
graduates starting out today, it can be daunting to establish where to start and how to 
successfully combine medical training with academic activity. Although there are many 
research opportunities available to those early in their career, it is important for each 
individual  to investigate which specific areas interest them  and what skills they will 
need to develop their research career. This book breaks down the many considerations 
to support your decision-making and support successfully undertaking research. These 
include how to get started, how to design and appraise clinical studies, understanding 
statistical tools needed for specific research questions, ethical considerations, public 
and patient involvement, qualitative research and the vital dissemination of research 
findings. 

I remain completely convinced that academic activities, alongside clinical practice, are a 
great route to sustain a long, varied and interesting career. Although at times it may feel 
daunting, or more complicated, the extra effort is so worth it. This book segments areas 
of knowledge and demonstrates how things have developed – in research techniques 
and more broadly. The focus on ethics; the importance of involvement of public and 
patients in research – not as people to be ‘done to’ but fully involved in co-designing 
research areas and outcomes that are important and relevant to them – is welcome. 

Of course, clinical academic activity is much broader than conducting research 
projects and as your experiences develop, you may well focus on a variety of areas, 
all of which should help your progression. There are contributions to education, 
knowledge exchange, enterprise; other areas of leadership and citizenship, which may 
become  relevant and allow flexibility in your personal academic pathway. My own 
career has been very varied and leant on different aspects of academic activity over the 
years, but cumulatively has helped my progression to a leadership level I could never 
have imagined at the point of my graduation from medical school. So, be ambitious 
and go for it in your own way! 

Professor Jenny Higham 
Vice-Chancellor

St George’s, University of London 

00_Understanding Clinical Research.indb   800_Understanding Clinical Research.indb   8 05/04/2023   15:3905/04/2023   15:39



ix

Preface
Over the last few years clinical research has been a crucial driving force behind 
significant developments in new treatments in medicine, surgery and primary care. 
Whilst welcoming these advances in treatments and practice, clinicians and researchers 
may not always be equipped to assess studies and their methodologies in busy clinical 
or research environments. This book is aimed at budding researchers who are starting 
out in research and require further information on the established principles of clinical 
research. It will also be of interest to the practising clinician and researcher who needs 
to appraise and consider these developments in evaluating best practice. 

There are seven chapters in the book, which cover key topics in initiating research, 
obtaining funding, design, planning and carrying out of research projects. We also 
summarise case histories, providing information about how recent medical and 
science graduates can identify research areas they are interested in. There are chapters 
on designing and appraising clinical studies, and on types of study, such as expert 
opinion, case reports, cross-sectional studies, case–control, cohort studies, randomised 
controlled trials, systematic reviews and meta-analysis. There are also chapters on 
statistics, data acquisition, analysis and research methodology. A chapter dedicated 
to ethical considerations and governance is also provided. There is a chapter on 
qualitative research, mixed methods study design and a dedicated chapter on public 
and patient involvement, which are important considerations for many studies. The 
final chapter discusses presenting data as oral or abstract presentations, considerations 
for publishing and selecting appropriate journals for scientific research.

This book is designed to provide an introduction to clinical research. We focus on the 
‘why’ and the ‘how’ and discuss the rationale for developing clinical research studies 
based on the questions that a researcher wants to ask. With the recent Covid-19 
worldwide pandemic, many clinicians and researchers were asked to contribute to 
clinical studies and trials which led to the rapid development of new therapies and 
vaccines for combating the pandemic. Such an international effort required rapid 
upskilling by the workforce to equip them with the skills required in conducting and 
reporting clinical research in a time-restricted environment. Many of the published 
studies for Covid-19 are used as case histories in the book, with worked examples on the 
types of study, statistical analyses and reporting outcomes. Our examples demonstrate 
how evidence-based practice is developed through research. 

Our book embodies the Postgraduate Certificate in Research Skills and Methods 
curriculum at St George’s, University of London and can also be used as an accompanying 
text for other PGCert and Masters courses in clinical research. It will also be helpful to 
those who are embarking on MD/PhD studies.

Kathryn Biddle 
Anna Blundell 

Nidhi Sofat
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43

C H A P T E R  3  
Statistics

3.1 Introduction

Statistics is the science of collecting, analysing, interpreting and presenting data. 
This chapter will provide a concise overview of some of the key concepts involved 
in statistics along with worked examples highlighting the application of different 
statistical methods. 

3.2 Obtaining and describing data

3.2.1 Types of data
Different types of statistical methods are used to analyse different types of data. The 
main types of data are summarised below.

Numerical data

This is quantitative data. The two main types include continuous and discrete data.
	ā Continuous data

	V Continuous data can take any numerical value and can be meaningfully 
subdivided into finer levels. Continuous data is usually measured on a scale or a 
continuum. 

	V Measurements such as height and weight fall into this category, e.g. 1.54m and 
53.4kg.

	ā Discrete data
	V Discrete data can only take certain numerical values, usually integers. The 

discrete values cannot be subdivided and therefore only a limited number of 
values is possible.

	V Examples include number of people or number of hospital visits. In these 
examples, it is not possible to subdivide integers into smaller increments such as 
half a person or half a hospital visit.

00_Understanding Clinical Research.indb   4300_Understanding Clinical Research.indb   43 05/04/2023   15:3905/04/2023   15:39



44 Chapter 3: Statistics

Categorical data

This is data that has been grouped into categories on the basis of qualitative features. 
The types include nominal, ordinal and binary data.
	ā Nominal data

	V Nominal data is grouped into categories that cannot be ordered.
	V Examples include blood group or ethnicity.

	ā Ordinal data
	V Ordinal data is grouped into categories that can be ordered.
	V Examples include tumour stage.

	ā Binary/dichotomous data
	V Binary data refers to data where there are only two possible values (e.g. 0 or 1) or 

two possible categories (e.g. dead or alive).

3.2.2 Obtaining data, i.e. sampling
Clinical researchers are usually interested in populations. Populations are defined 
as groups of individuals who share a common characteristic or condition, usually a 
disease. For example, a researcher investigating rheumatoid arthritis is interested in 
all patients who have been diagnosed with this condition. In clinical research, it is 
generally not feasible to study an entire population, and therefore a subset or sample of 
the population is recruited to the study. The study reports the results obtained from the 

Figure 3.1. Obtaining a sample from a population. A sample is a subset of the population that 
is included in a research study. The sample should be representative of the population in order 
for researchers to infer conclusions regarding the wider population.
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453.2: Obtaining and describing data

sample (the sample estimate) and this is used to estimate the value in the population 
(the population parameter). In order for the sample estimate to accurately reflect the 
population parameter, the individuals in the sample must be representative of the 
individuals in the population (see the sampling section below for more details on how 
this is achieved). When the sample is not representative of the general population, the 
sample estimate does not equal the population parameter. This is sampling error. When 
significant sampling error occurs, the results of the study cannot be generalised to the 
overall population, thus limiting the external validity of the study. 

Sampling methods

Different methods are used to select a sample for inclusion into a clinical study. Three 
examples of sampling method are summarised below. 
	ā Simple random sampling: in this scenario, every member of the population has 

an equal probability of selection into the sample. Theoretically, a researcher may 
have a list of all of the patients diagnosed with Goodpasture’s syndrome. In this 
case, the list is called the “sampling frame”. In order to select a sample, individuals 
are randomly drawn from the list using methods such as a random number 
generator. In reality, the entire population of patients with a defined disease, such 
as Goodpasture’s syndrome, is not usually available for possible recruitment and 
this type of sampling is generally not feasible. 

	ā Stratified random sampling: this is a modification of random sampling. In this 
scenario, the whole population is divided into homogenous strata according 
to demographic or clinical factors (examples include gender, ethnicity and 
comorbidity). After the population are divided into strata, the researcher selects a 
random sample of individuals from each stratum to be included into the clinical 
trial. 

Stratified random sampling is a widely-used sampling method in clinical trials. 
It allows researchers to study effect sizes between different groups and allows 
sampling from under-represented categories.

	ā Convenience sampling: in this method, participants are recruited on the basis of 
availability and ease of access. For example, in a study investigating patients with 
rheumatoid arthritis, individuals attending outpatient rheumatology clinics within 
the study period are recruited. Convenience sampling is a widely used method for 
subject recruitment as it is easy, cheap and quick. On the downside, convenience 
sampling may introduce an element of bias into subject recruitment. For example, 
individuals attending clinic may be more compliant with medical treatments than 
the individuals who do not attend their appointments.
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46 Chapter 3: Statistics

Accuracy versus precision

When obtaining a sample estimate, it is important to consider its accuracy and 
its precision.

Precision: a measure of how close measured values are to each other 
Accuracy: a measure of how close the sample estimate is expected to be to the 
population parameter

3.2.3 Measures of central location
Measures of central location represent the average values in a dataset. The most 
commonly used measures include the mean, median and mode.

The arithmetic mean is the best-known average value. It is calculated by summing 
all of the values in a dataset and dividing by the total number of values. The mean is 
easy to calculate and convenient to use in many contexts. By considering all values in 
a dataset, the mean is the most sensitive method to measure an average. The main 
disadvantage to using the mean is that it is highly influenced by extreme values (or 
outliers).

The median lies at the midpoint of all values in a dataset when they are ordered 
numerically. Therefore, 50% of values in a dataset are greater than the median value 
and 50% of values are lower. The median is not influenced by extreme values and is 
preferable to the mean when outliers are present. 

The mode is the value that occurs most frequently in a dataset. The mode is not 
commonly used as a measure of average as it is not generally representative of the data. 
It is, however, useful to know whether a dataset has one or two modal values. When a 
dataset has one modal value, it is described as unimodal. 

3.2.4 Measures of spread
Common measures of spread include the range, interquartile range, variance and 
standard deviation.

The range is the difference between the largest and smallest value in a dataset. It is 
very simple to calculate but may not be representative of the dataset, particularly when 
outliers are present. 

The interquartile range (IQR) is calculated by ordering the dataset, dividing it into 
quartiles and calculating the difference between the bottom and top quartile. The IQR 
therefore indicates where the middle 50% of the data lie. The IQR is not influenced by 
outliers and therefore is a useful measure of spread when data is not symmetrically 
distributed. 

A box and whisker plot is a common method to display the median, IQR and the 
range of a dataset. Its interpretation is outlined in Figure 3.2. 
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473.2: Obtaining and describing data

The symmetry of the box and whisker plot gives useful information regarding the 
distribution of the data. This is discussed in more detail in Section 3.3.1.

The variance measures the degree to which individual values in a dataset deviate from 
the mean. The larger the variance, the larger the spread of the data. 

The variance is calculated using the following steps:

1.	 Subtract the mean from each value in the dataset

2.	 Square each of the differences and add all of the squares together

3.	 Divide the sum of the squares by the number of values in the dataset minus 1

The standard deviation (SD) is derived from the variance and is a very commonly 
reported measure of spread. It is calculated by performing the square root of the 
variance. Therefore, the larger the standard deviation, the larger the spread of the data. 
Both the variance and the SD are calculated using computer programs, such as SPSS 
or GraphPad.

Figure 3.2. The box and 
whisker plot displays the 
median, IQR and range of a 
dataset. Sometimes, outliers 
are represented as points 
outside of the whiskers. 

Figure 3.3. Equation to 
calculate the variance of 
values in a dataset.
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48 Chapter 3: Statistics

WORKED EXAMPLE 
Sphingosine-1-phosphate and CRP as potential combination 
biomarkers in discrimination of COPD with community-acquired 
pneumonia and acute exacerbation of COPD
Hsu et al. (2022) Resp Res, 23: 63, doi.org/10.1186/s12931-022-01991-1

Study aim

This study evaluated the use of the blood marker sphingosine-1-phosphate (S1P) to 
differentiate between community-acquired pneumonia and acute exacerbation in patients 
with COPD. 

Results

The following box and whisker plots show the S1P readings in COPD patients with acute 
exacerbation (AE) compared to those with pneumonia (Pn).

Figure 3.4. A worked example of the interpretation of two box and whisker plots. Image 
reproduced under a CC BY 4.0 licence.

Comments
	• This example nicely illustrates the importance of choosing the correct measure 

of average and spread to describe your study data. In this case, the median and 
IQR were used because the data was skewed and because there were a number of 
outlying data points. In this example, it would have been inappropriate to use the 
mean and SD, which are highly influenced by outlying values.
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3.3 Distribution, probability and confidence intervals

3.3.1 Types of distribution
Throughout this book, we will consider two main types of distribution:

1.	 Probability distribution: this is a mathematical distribution that gives us the 
predicted probability of an outcome occurring. Probability distributions have 
important applications in medical statistics, including in the calculation of 
confidence intervals and in hypothesis testing.

2.	 Frequency distribution: this gives us the observed frequency of a particular data 
point in a study or experiment. A frequency distribution is plotted on a histogram 
after data has been collected. In clinical research, quantitative data can follow 
a variety of different frequency distributions. These are important to consider 
because they influence hypothesis testing and statistical analysis (discussed in 
Section 3.5).

Probability and probability distributions

Probability is an important concept in statistics. It is defined as a measure of uncertainty, 
i.e. how likely something is to occur. Numerically, it is usually expressed as a value 
between 0 and 1, where 0 is impossible and 1 is certain.

Probability distributions are theoretical distributions that show the probability of all 
of the possible values of a random variable. For example, imagine the probability 
distribution when rolling two dice. Each die has a 1 in 6 (0.17) probability of rolling any 
number, one to six. When rolling two dice, the sum of the rolled values on the two dice 
will form the probability distribution illustrated below. 

Figure 3.5. Probability 
distribution for sum of 
rolling two dice.

As you can see, seven is the most likely number to roll and occurs in 6 out of 36 rolls 
(17% of rolls). Conversely, rolling a two is much less likely and will only occur in 1 out of 
36 rolls (3% of rolls). In this example, the probability distribution gives us the predicted 
outcome of rolling each number. If an experiment was performed where two dice 
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50 Chapter 3: Statistics

were rolled 50 times and the results were plotted, the frequency distribution would 
differ from the probability distribution due to the effects of chance. As the number 
of rolls increases, the frequency distribution approaches the shape of the probability 
distribution.

The normal distribution

Probability and frequency distributions can follow a normal distribution. This 
is a symmetrical distribution that follows a bell-shaped curve with a single peak. 
Mathematically, the normal distribution follows a Gaussian curve and is symmetrical 
around the mean value. When data is normally distributed, the mean, median and 
mode are equal. The width of the curve depends on the variance; as the variance 
increases, the curve becomes wider.

When data is distributed normally:
	ā 68% of values fall in the range: mean –1SD to mean +1SD
	ā 96% of values fall in the range: mean –2SD to mean +2SD
	ā 99% of values fall in the range: mean –3SD to mean +3SD

Pragmatically, 95% of data is considered to fall within 2 SD of the mean (rounded from 
96%). This distribution range is commonly used to arbitrarily represent the ‘normal 
range’. When values fall outside of this range, they are reported as abnormal. This can 
be useful in the interpretation of test results and in establishing reference ranges, for 
example, in the measurement of blood biochemical markers. 

Figure 3.6. Normal 
distribution curve. 
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Skewed datasets

In some cases, frequency distributions are asymmetrical with a substantially longer tail 
on one side of the frequency histogram. In these cases, data is termed skewed and the 
direction of skew depends on the tail. 

Positively skewed data has a longer tail on the right. In other words, there are a relatively 
large number of low values and a lower number of extreme higher values. In positively 
skewed data, the mean is greater than the median which is greater than the mode. 

Negatively skewed data has a longer tail on the left. In other words, there are a relatively 
large number of high values and a lower number of extreme low values. In negatively 
skewed data, the mode is greater than the median which is greater than the mean.

Figure 3.7. Skewed datasets versus the normal distribution.

The t distribution

The t distribution is a probability distribution that is widely used in statistics. It is 
most commonly used in studies with a small sample size, usually under 30, and when 
the population standard deviation is unknown. The t distribution looks very similar 
to the normal distribution curve but shorter and wider, reflecting a greater degree of 
uncertainty. The exact shape of the t distribution is influenced by the mean, variance 
and degrees of freedom (df ) of the data, where df equals the sample size –1. 

The t distribution has two main applications in statistics:

1.	 Calculation of the confidence interval (discussed in Section 3.3.3)

2.	 Testing hypotheses about one or more means (discussed in Section 3.4).

Figure 3.8 illustrates the t distribution. As the sample size increases, the t distribution 
approaches the normal distribution curve. When the sample size is greater than 30, the 
t distribution is very similar to the normal distribution. 
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3.3.2 Standard error of a sample mean
Due to sampling error (discussed in Section 3.2.2), the sample estimate varies between 
different studies and may not always be an accurate representation of the population 
parameter. For example, imagine that you are interested in estimating the mean HbA1c 
of all patients with a diagnosis of type 2 diabetes under the care of an endocrine team 
at a tertiary hospital. In order to do this, you decide to measure the mean HbA1c in a 
sample of diabetic patients. If this process was repeated 100 times, 100 different sample 
estimates would be derived and a histogram of these estimates could be plotted. This 
distribution represents the sampling distribution of the mean. Figure 3.9 demonstrates 
the relationship between the frequency distribution for the population parameter and 
the sampling distribution of the mean in studies with different sample sizes (sample 

Figure 3.8. The t 
distribution with increasing 
sample size. As the sample 
size increases, the t 
distribution approaches the 
normal distribution. 

Figure 3.9. Histograms showing the relationship between the frequency distribution of the 
population parameter and the sampling distribution of the mean. As the sample size increases, 
the sampling distribution of the mean narrows and the sample estimates become a more 
precise representation of the population mean. 
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sizes of 10, 20 or 50). In this example, when the sample size is 10, the range of the sample 
estimates of HbA1c value is large and ranges from 65mmol/L to 84mmol/L. When the 
sample size is large, the sample estimates lie closer to the true population mean HbA1c 
value and the range of estimates decreases. When the sample size is greater than 30, 
the estimates of the mean follow a normal distribution. 

Statistically, the difference between the sample estimate and the population parameter 
is quantified using the standard error of the mean (SEM). The smaller the SEM, the 
greater the precision of the sample estimate.

Mathematically, the SEM is calculated using the following formula:

SEM = standard deviation / square root of the sample size

As illustrated in the mathematical formula above, the SEM is influenced by two factors: 
the standard deviation of the sample estimates and the size of the sample. By increasing 
the study sample size, the SEM decreases and the sample estimate is more precise. 
Precision also increases when the sample variance decreases. 

3.3.3 Confidence intervals
A research study allows us to calculate a point estimate of the population parameter 
of interest. Whilst the SEM represents the precision of the estimate, it is not intuitive or 
easily interpretable by most clinicians. Therefore, the SEM is generally used to estimate 
the confidence interval (CI) for the parameter. 

The CI gives a range in which the true population parameter is likely to lie. Most 
commonly, the 95% confidence interval is used. This is the interval around the sample 
estimate in which there is a 95% probability that the population parameter lies. 

The 95% confidence interval can be calculated using two main methods:

Method 1: Calculation using the normal distribution

As discussed in Section 3.3.2, provided that the sample size is large, the sample means 
follow a normal distribution around the population parametric. We also know that in 
a normal distribution, approximately 95% of values fall within 1.96 SD of the mean 
(as discussed in Section 3.3.1). When referring to sample estimates in relation to the 
population parameter, the SD is termed the SEM.

Therefore, in order to calculate the 95% confidence interval, we can apply the following 
formula:

95% CI = from sample mean – (1.96 × SEM) to sample mean + (1.96 × SEM)

Method 2: Calculation using the t distribution

Strictly speaking, we should only use Method 1 when the variance in the population is 
known. 

Moreover, Method 1 should only be used when the data is normally distributed. This 
might not be the case when the sample is small.
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If it is not appropriate to use Method 1, we can calculate the confidence interval using 
the t distribution:

95% CI = from sample mean – (t0.05 × SEM) to sample mean + (t0.05 × SEM)

where t0.05 is obtained from a t distribution table which can be found online or in a 
statistics textbook. In order to find the relevant value for t0.05, we simply need to reference 
the value corresponding to the study’s degrees of freedom and the desired significance 
levels. We will talk about this in more detail in Section 3.4. 

Interpretation of the confidence interval

Consider the following example. In this study, investigators measured the mean change 
in blood pressure in study participants prescribed a trial medication versus placebo. 
Figure 3.10 visualises their results, with the sample estimate represented by the circles 
and the 95% confidence interval represented by the horizontal lines. 

-10 -5 0 5

Trial medica�on

Placebo

Mean change in
BP (mmHg)

 
Figure 3.10.  A visual representation of sample estimates and confidence intervals. In this 
example, investigators measured the mean change in blood pressure in study participants 
prescribed a trial medication versus placebo. 

The CI gives us three useful pieces of information:

1.	 The width of the confidence interval represents the precision of the sample 
estimate. The wider the confidence interval, the less precise and greater the 
uncertainty of the estimate. In this example, the confidence interval for the trial 
medication and for the placebo are both around 10mmHg. This suggests that there 
is a large degree of uncertainty in the estimates for both medications. 

2.	 The range of the confidence interval quantifies the magnitude of the effect 
of interest and enables us to assess the clinical implications of the result. In this 
example, the effect of the trial medication can be anywhere between a reduction 
in blood pressure of 10mmHg versus an increase in blood pressure of 1mmHg. 

3.	 The position of the confidence interval relative to values of interest, most 
notably the line of null effect (the value at which there is no association between 
exposure and outcome or no difference between interventions on outcome). In 
this example, the confidence interval for the trial medication crosses zero; this 
suggests that the treatment may not have any effect on blood pressure. This result 
is commonly extrapolated to suggest that there is no effect of treatment with a 
significance level of 0.05 (discussed in Section 3.4.2).
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Abumayyaleh et al. (2022) Am J Cardiovasc Drugs, 22: 535, doi.org/10.1007/s40256-022-
00525-w

This study aimed to characterise the haemodynamic effects of sacubitril/valsartan in patients 
with heart failure. In patients who responded to this medication, the risk factors for mortality 
were investigated. Table 3.1 summarises the effect of three of the hypothesised predictors of 
mortality. 

Table 3.1: The effect of type 2 diabetes mellitus, congestion at admission and coronary 
artery disease on mortality

HR 95% CI P value

Type 2 diabetes mellitus 2.17 0.59–7.92 0.24

Congestion at admission 5.57 1.45–21.48 0.01

Coronary artery disease 3.70 0.47–29.44 0.22

The first column summarises the hazard ratio (HR) corresponding to the three hypothesised 
predictor variables. As discussed in Chapter 2, a HR >1 indicates that the predictor is 
associated with the outcome. As all three comorbidities have a HR greater than 1, they are 
all associated with an increased risk of mortality in this cohort. The size of the HR gives us an 
estimate of the increase in risk. For example, in this study, patients with type 2 diabetes are at 
2.17 times greater risk of death than those without. Although this sounds very significant, we 
need to review the confidence interval before interpreting the significance of these results. 

The second column summarises the 95% CI for each of the comorbidities. We can draw the 
following conclusions from these values:

1.	 The CI intervals for all three comorbidities are very wide. This indicates low precision of 
the estimates and a large degree of uncertainty regarding the true HR for the population. 
To illustrate this further, consider the 95% CI for type 2 diabetes. We can state that we are 
95% confident that the true value for HR falls between the range of 0.59 and 7.92. In other 
words, the true HR could be as low as 0.59 (i.e. protective against death) or as high as 7.92 
(i.e. a significant risk factor for death). In this scenario, the large degree of uncertainty 
makes it difficult to draw any useful conclusions.

2.	 The CI intervals for type 2 diabetes and coronary artery disease cross the line of null effect 
(i.e. HR = 1). This is often used as a marker of statistical significance and when this line is 
crossed, it is often inferred that there is no significant association between the exposure 
and outcome of interest. Accordingly, in this example, both type 2 diabetes and coronary 
artery disease are not significantly associated with mortality. This is also represented 
by the P value of greater than 0.05. In contrast, congestion at admission is significantly 
associated with mortality. This is represented by a 95% confidence interval that does not 
cross a HR of 1 and a P value of 0.01. The interpretation of the P value is discussed in detail 
in Section 3.4.2.

WORKED EXAMPLE 
Hemodynamic effects of sacubitril/valsartan in patients with 
reduced left ventricular ejection fraction over 24 months: a 
retrospective study
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3.4 Statistical hypothesis testing and significance levels

Statistical hypothesis testing is a vital concept in medical research. In order to perform 
statistical hypothesis testing, five main steps need to be performed:

1.	 Define the null and alternative hypotheses.

2.	 Choose an appropriate test statistic. 

3.	 Determine the critical value of the test statistic; i.e. at what value do we consider 
the hypothesis proved or disproved? This is also known as the significance level.

4.	 Perform the statistical test and obtain the P value. 

5.	 Interpret the P value.

Throughout the next sections of the chapter, we will discuss these steps in more detail.

3.4.1 The null hypothesis
A hypothesis is a proposed explanation for an observation and is the starting point for 
all clinical research. It is important to define a hypothesis prior to a clinical study taking 
place. This usually takes the form of the null and alternative hypotheses. 

The null hypothesis (H0) states that there is no difference in the outcome of interest 
between the defined groups.

The alternative hypothesis (H1) states that there is a difference in outcome of interest 
between groups; this difference can be in either direction (if the hypothesis is two-
tailed). One-tailed hypotheses state the direction of effect.

For example, in the ARISTOTLE trial (see Section 2.10.9), the null and alternative 
hypotheses are as follows:

H0: There is no difference between the risk of ischaemic stroke in patients with AF on 
warfarin as compared to patients on apixaban.

H1: There is a difference between the risk of ischaemic stroke in patients with AF 
on warfarin as compared to patients on apixaban (this could either be increased or 
decreased risk of stroke).

3.4.2 Significance levels and test statistics
The level of significance should be defined prior to the statistical test being performed. 
When defined at this stage, it is known as the alpha value. The alpha value is the 
probability of incorrectly rejecting the null hypothesis when it is actually true, i.e. 
finding a difference due to chance when there is in fact no difference. A value of 0.05 
is conventionally chosen. This equates to a 5% chance of incorrectly rejecting the null 
hypothesis due to the effects of chance.

The P value is reported after the statistical test has been performed. It is defined as the 
probability of obtaining the result, or something more extreme, if the null hypothesis is 
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true. In similarity to the alpha value, a P value of 0.05 is conventionally chosen for statistical 
significance. When the P value is less than 0.05, there is a less than 5% probability that 
the null hypothesis is true, and therefore we reject the null hypothesis and accept the 
alternative hypothesis. As the P value approaches zero, there is decreasing evidence in 
favour of the null hypothesis.

Test statistics

The test statistic describes how closely the distribution of your data matches the 
distribution predicted under the null hypothesis you are using. The most commonly 
used test statistics include the Z-score and the T-score. Other test statistics include the 
f statistic in ANOVA and the chi-square statistic in chi-squared (χ2) test.

1.	 The Z-score describes the relationship of the mean of the dataset to the mean of 
the population. It is measured in terms of standard deviation from the population 
mean. The Z-score ranges from –3 to +3. When the Z-score is 0, it equals the 
population mean. When it is 1, it is 1 SD from the population mean. Z-scores can be 
positive or negative depending on whether the value is greater or lower than the 
mean. 

Mathematically, the Z-score is calculated using the following formula:

Z = (X–μ) / (s/ √ n) 
Where: 
X = sample mean 
μ = population mean 
s = SD of the population means 
n = sample size

2.	 The T-score is similar to the Z-score but is used when the sample size is small and 
therefore the population mean is not known. The T-score is used in hypothesis 
testing, using the student’s t test (see Section 3.5.1).

Mathematically, the T-score is calculated using the following formula:

T = (X – μ)/ (s/ √ n)
Where: 
X = sample mean 
μ = population mean 
s = SD of the sample means 
n = sample size

The T-score is traditionally referenced from a t distribution table. In order to look it up, 
you need to calculate the degrees of freedom (df) for your study. The df is dependent 
on the sample size of the study; the larger the sample size, the greater the df. Using 
the df, significance level and number of tails, the T-score can be easily referenced in a 
t distribution table – this can be found online or in any statistics textbook. In practice, 
T- and Z-scores are always calculated using statistical programs such as SPSS or Excel. 
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Degrees of freedom (df)

The degrees of freedom of an estimate is the number of independent variables in a 
dataset. In order to obtain the degrees of freedom for a sample estimate, subtract 1 
from the number of measurements. For example, imagine that you are estimating 
the mean blood pressure reduction with a new medication. If you use 10 people, 
the df is 9 and if you use 200 people, the df is 199. When calculating df using more 
than 1 sample from each patient or ANOVA tests, different formulae need to be used.

Once the test statistic has been generated, we can consider its location on the normal or 
t distribution curve. The central region of the curve is the acceptance region. When the 
test statistic falls within this region, we can infer that there is no statistically significant 
difference between the sample estimate and the population parameter and we will 
accept the null hypothesis. The tail(s) of the t distribution are the rejection regions. 
Mostly commonly, both tails are used as rejection regions; this is the case in two-tailed 
significance tests. Conversely, in one-tailed significance testing, only one tail is used as 
the rejection area. Hence the hypothesis predicts the direction of effect. In either case, 
when the sample estimate falls within these areas, we infer that there is a statistically 
significant difference between the sample estimate and population parameter and we 
reject the null hypothesis. Traditionally, a cut-off value of 1.96 is used for the rejection 
region; this equates to a significance level of 5%. Statistical tests are used to derive a P 
value from a test statistic. The choice of statistical test is determined by the type of data. 
This is discussed in Sections 3.5 and 3.6.

SD

-2 T-scores0 2

-1.96 1.96

3.4.3 Types of error (type I versus type II)
There are two main types of error that occur in hypothesis testing.

A type I error occurs when a significant difference between groups is reported 
when in reality, one does not exist. This is a false positive result, e.g. reporting that an 

Figure 3.11. Rejection 
regions on a normal or t 
distribution curve. In this 
example, the rejection 
regions are two-tailed with a 
significance level of 0.05.

00_Understanding Clinical Research.indb   5800_Understanding Clinical Research.indb   58 05/04/2023   15:4005/04/2023   15:40



593.4: Statistical hypothesis testing and significance levels

antihypertensive is superior to placebo in lowering blood pressure when in reality there 
is no difference. Mathematically, the alpha value is the probability of obtaining a type 
I error. A type I error is more likely to occur in studies with a small sample size due to 
increased effect of confounding.

A type II error occurs when it is incorrectly reported that there is no difference between 
the two groups when in reality one exists. This is a false negative result, e.g. reporting 
that an antihypertensive medication does not lower blood pressure when in reality it 
does. Mathematically, the probability of a type II error is denoted as the beta value. 
Type II errors are more likely to occur when the sample size is small and the study is not 
powered to detect clinically significant differences between the two groups.

3.4.4 Statistical power
Statistical power is defined as the probability of rejecting the null hypothesis when it 
is false. It is defined mathematically as 1 – beta. Increased statistical power is associated 
with a reduced chance of incorrectly failing to reject the null hypothesis, i.e. obtaining 
a false negative result. In most studies, a power of 80–90% is chosen (this represents 
10–20% chance of incorrectly rejecting the null hypothesis). 

The power of the study is affected by four major components:

1.	 Sample size

As sample size increases, power increases.

2.	 Effect size

The larger the effect size of the treatment, the easier it will be to detect a difference 
between treatment arms and the larger the power.

3.	 The variability of the observations

As the variability of the observations increases, the power decreases.

4.	 Significance level

The larger the significance level, the greater the power of the study but the larger 
the probability of making a type II error.

In order to increase the power of the study, a larger sample size is generally required. In 
addition to being more expensive, resource-intensive and time-consuming, recruiting 
a larger sample may be unethical as more participants are unnecessarily recruited to an 
experimental study (discussed in Chapter 4). Therefore, prior to performing the study, 
a sample size estimation should be performed. This is an estimation that calculates 
the sample size required to detect a clinically significant difference. The considerations 
needed when performing a sample size estimation are summarised in Section 3.9.

3.4.5 Multiple hypothesis testing and adjustment
In some studies, multiple hypotheses are tested using the same sample. As the number 
of hypotheses tested increases, the chance of a type I error increases dramatically. This 
creates issues with data interpretation and deciding whether a result is truly significant 
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or not. For example, imagine that you are testing 20 different hypotheses in one sample, 
each with a significance level of 0.05. Mathematically, the probability of obtaining a 
significant result through the effects of chance alone is equal to 1 – ((1–0.05)20). This 
equates to a 64% chance of observing at least one statistically significant result.

In order to deal with multiple hypothesis testing, the alpha value (the predetermined 
significance level) can be adjusted. The Bonferroni correction is the simplest adjustment 
method and adjusts the alpha value dependent on the number of hypotheses tested. It 
is calculated using the following formula:

Alpha / number of hypotheses tested

The Bonferroni correction assumes that all hypotheses are independent of each other. 
In research settings, this is often not the case and, in some circumstances, can be overly 
conservative and result in a very high rate of false negative results. 

WORKED EXAMPLE 
Efficacy and safety of tofacitinib monotherapy, tofacitinib with 
methotrexate, and adalimumab with methotrexate in patients with 
rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, 
head-to-head, randomised controlled trial
Fleischmann et al. (2017) Lancet, 390: 457, doi.org/10.1016/S0140-6736(17)31618-5

The ORAL Strategy study was a phase 3b/4 RCT investigating the efficacy of tofacitinib (a 
janus kinase inhibitor) compared to adalimumab (an anti-TNF biologic) for the treatment of 
patients with RA. In this study, participants were randomised to one of three arms; tofacitinib 
monotherapy (A), tofacitinib with methotrexate (B) or adalimumab with methotrexate (C).

In a two-armed trial, there is only one comparison (A vs. B). In this study, there were 
three study arms and hence three comparisons (A vs. B, B vs. C, A vs. C). As the number of 
comparisons increase, the probability of obtaining a false positive result (i.e. a type I error) 
increases. Some studies, including this example, use a Bonferroni correction to account for 
this.

In this example, the study investigators used three study arms and hence three comparisons. 
Therefore, an alpha value of 0.0167 (0.05/3) was used to preserve the overall type I error rate 
to 5%.

The Bonferroni correction can be used for studies where multiple comparisons are used. 
These most commonly include studies with more than two treatment arms and studies with 
multiple endpoints. There is some debate as to when a Bonferroni correction should be used 
and concern that it increases the risk of false negative results (type II error).
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3.5 Statistical significance tests to compare means

In order to choose an appropriate statistical test to compare the means of samples, we 
need to ask ourselves the following questions. 

1.	 Is the data continuous? 

This is a necessity for all of the following statistical tests. Categorical data will be 
discussed in the next section.

2.	 How many groups do I want to compare?

3.	 Is the outcome data parametric or non-parametric?

Parametric statistics are based on assumptions about the population from 
which the sample was taken. In order to use parametric statistics, the population 
distribution frequency should follow a normal distribution. Furthermore, the 
variances in each group should be equal. 

Non-parametric statistics are not based on assumptions and this data can be 
collected from a sample that does not follow the normal distribution. 

4.	 Are the comparison groups independent or dependent?

In independent samples, information about subjects in one group does not 
provide information about the subjects in the other groups. In this scenario, groups 
contain different subjects and there is no meaningful way to compare them.

In dependent samples, subjects in one group provide information about other 
groups. This occurs in two scenarios:
	V Measurements are taken from the same individuals at two different time 

points; for example, before and after an intervention. This is the most common 
example.

	V Measurements are taken from different subjects who have been intentionally 
matched to each other. For example, in case–control studies, cases and controls 
may have been matched on the basis of demographic or clinical features. 
Although the matched pairs are different people, the statistical analysis treats 
them as the same subject because they are intentionally very similar.
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3.5.1 Selecting a statistical test to compare means
The following flowchart (Fig. 3.12) can be used to identify which statistical test is most 
appropriate for comparing means.

Figure 3.12. Flowchart summarising statistical tests that can be used when comparing means. 

After the appropriate test has been chosen, statistical programs such as SPSS or 
GraphPad can be used to calculate P values.

3.6 Statistical significance tests to compare 
percentages or proportions

In order to choose an appropriate statistical test to compare differences between 
proportions or percentages between populations, we need to ask ourselves the 
following: 

1.	 Is the data categorical? (This is a necessity for all of the following statistical tests).

2.	 How many groups do I want to compare?

3.	 Are the groups paired or independent? 

4.	 Does the data fulfil the prerequisites required for the statistical test of note?

3.6.1 Selecting a statistical test to compare percentages
The following flowchart (Fig. 3.13) can be used to identify which statistical test is most 
appropriate for comparing percentages.
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Paired groups

Comparing 
percentages or

propor�ons

Independent
groups

2+ groups

Chi-squared
test

Chi-squared
test for trend

McNemar’s 
test

Fisher’s exact
test

2 groups

None

Number of
discordant

pairs at 
least 10

No more than
20% of cells

with an 
expected

frequency <5

No cells with 
an expected 
frequency <1

Large sample
size, at least 30

Ordered
groups

Figure 3.13. Flowchart on statistical tests that can be used when comparing percentages or 
proportions. Prerequisites are shown in the pink boxes.

Louis et al. (2018) Advances in Therapy, 35: 563, doi.org/10.1007/s12325-018-0678-0

Background
Extra-intestinal manifestations (EIM) are common in patients with Crohn’s disease. This study 
aimed to investigate the effect of the biological medication adalimumab on EIM in patients 
with Crohn’s disease. 

Methods

In order to compare the differences in EIM between the two groups, the authors first 
described the demographics of recruited subjects and used statistical testing to determine 
whether there was any difference between the two groups. This is an important part of any 
study comparing two groups of patients and will be the focus of this worked example.

T tests were used to compare the differences between groups in continuous variables. These 
included age, disease duration and biochemical markers such as CRP. In this example, the 
t tests are unpaired because the values in one group do not influence the readings in the 
other. By choosing the t test, the authors are assuming that the data is parametric. 

Chi-squared tests were used to compare differences between groups in categorical variables 
including gender and disease activity. By choosing the chi-squared tests, the authors 
assumed that the data fulfilled the prerequisites outlined in Figure 3.13. Data must be 
independent and must fulfil the expected frequencies requirement when recorded in a two-
way table. In this example, a two-way frequency table for gender would appear as follows:

WORKED EXAMPLE 
Adalimumab reduces extraintestinal manifestations in patients 
with Crohn’s disease: a pooled analysis of 11 clinical studies
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Male Female

Adalimumab group 390 747

Placebo group 101 196

In order to perform a chi-squared test, no more than 20% of cells should have an expected 
frequency of less than five and no cells should have an expected frequency of less than 1.

Results

Table 3.2: A comparison of demographic and disease features in patients in the study on 
placebo versus adalimumab

Patients with EIM at baseline

Characteristic Placebo 
(n = 297)

Adalimumab 
(n = 1137)

P value

Age, years, mean (SD) 38.9 (11.9) 37.5 (12.2) 0.090

Female, n (%) 196 (66.0) 747 (65.7) 0.924

Disease duration, years, 
mean (SD) 11.0 (8.8) 10.3 (8.5)

Disease activity 0.001

Moderate, n (%) 149 (50.2) 686 (60.3)

Severe, n (%) 148 (49.8) 450 (39.6)

Albumin, g/L, mean (SD) 39.6 (4.8) 39.7 (5.0) 0.701

CRP, mg/dl, mean (SD) 1.7 (2.7) 1.9 (2.7) 0.248

Summary data abstracted from Advances in Therapy, 35: 563. 

Table 3.2 allows us to compare the two groups and make several conclusions:

1.	 The patients in the two groups are similar with regard to age, gender, disease duration, 
albumin level and CRP. This is demonstrated by a P value of greater than 0.05, indicating 
no difference between the two groups.

2.	 The patients allocated to receive placebo had higher rates of severe disease activity, 
compared to those allocated to receive adalimumab. This is demonstrated by a P value of 
0.001.

Discussion

This study investigated the difference in EIM in patients with Crohn’s disease on adalimumab 
versus placebo. In order to draw meaningful conclusions, the authors first described the 
demographic characteristics in the two groups. They used null hypothesis testing to do so 
and found that the patients allocated to placebo were significantly more likely to have severe 
disease. This indicates that the two groups are not well matched with respect to disease 
activity and this could have influenced the overall results from the study. This example 
describes the use of null hypothesis statistical testing to describe the differences between 
two groups and indicates the importance of doing this.
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3.7 Measures of risk

3.7.1 Relative risk versus odds ratio
In Chapter 2, we discussed the calculation of relative risk and odds ratio. A summary of 
the differences between the two measures is illustrated in Table 3.3.

Table 3.3: A comparison of relative risk versus odds ratio

Relative risk Odds ratio

Definition Risk in exposed / risk in unexposed Odds in exposed / odds in 
unexposed

Measure Risk = the total number of 
outcomes in a group divided by the 
number of people in the group

Odds = the number of outcomes 
in a group divided by the number 
of people in the group that did not 
experience the outcome

Use Used in a variety of studies 
including observational studies 
such as cohort studies and 
interventional studies such as RCTs 

Used in case–control studies; in 
such cases, the relative risk cannot 
be used 

Interpretation RR/OR >1: the probability of the outcome occurring is greater in the 
exposed than the unexposed group

RR/OR = 1: the probability of an outcome occurring is the same in the 
exposed and unexposed groups

RR/OR <1: the probability of an outcome occurring is less in the exposed 
than the unexposed group

Association OR approximately equal to RR when outcome is rare

OR greater than the RR when the outcome is common

3.7.2 Absolute risk reduction and number needed to treat
The absolute risk reduction (ARR) is another method to compare the risk of an 
outcome in one group to another. It is calculated using the following equation:

ARR = risk in exposed – risk in unexposed

The number needed to treat (NNT) is derived from the ARR. It is derived from the 
following calculation:

NNT = 1/ARR

The NNT is the number of patients needed to treat to prevent one adverse outcome (for 
example; death, heart attack or stroke). It is a measure that is commonly used to report 
the findings from RCTs and gives a measure of the benefit obtained from a treatment 
or intervention. The higher the NNT, the more patients need to receive treatment for 
any benefit to be seen. This information can be used when considering the risk:benefit 
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ratio of a treatment for an individual patient. On a wider level, the NNT gives us an idea 
of the cost-effectiveness of a treatment. 

For example, in classical studies comparing thrombolysis to streptokinase for the 
management of stroke in the 1980s, there was a 1% ARR in patients treated with 
thrombolysis. Therefore, 100 patients needed to be treated with thrombolysis for a 
single patient to gain benefit. At a time when thrombolysis was very expensive, this 
benefit was not cost-effective and therefore, streptokinase remained the treatment of 
choice until stronger evidence was reported.

WORKED EXAMPLE 
Tocilizumab in patients admitted to hospital with COVID-19 
(RECOVERY): a randomised, controlled, open-label, platform trial
RECOVERY Collaborative Group (2021) Lancet, 397: 1637, doi.org/10.1016/S0140-
6736(21)00676-0

The aim of this study was to evaluate the efficacy and safety of tocilizumab therapy in adult 
inpatients admitted with severe Covid-19. The primary outcome was 28-day mortality.

In this trial, 2022 patients were randomised to receive tocilizumab whilst 2094 patients 
received standard-of-care therapy. In total, 631 participants randomised to the tocilizumab 
group died compared to 729 participants in the standard-of-care therapy group.

Let’s consider the different comparisons of risk:

First, we need to calculate the risk of death in the two groups. This can be done by using the 
simple calculation:

number of events (in this case 28-day mortality) / total number of participants in group

Therefore, the risk of death in the tocilizumab group is: 621/2022 = 31%

And the risk of death in the standard-of-care therapy group is: 729/2094 = 35%

The relative risk is calculated by dividing the risk of death in the treatment group by the risk 
of death in the standard-of-care therapy group:

RR = 31/35 = 0.89

As the RR is less than 1, participants receiving tocilizumab had a lower risk of death than 
those who didn’t. This is a proportional measure of risk reduction, in contrast to the ARR 
which can be calculated as follows:

ARR = 35 – 31 = 4%

Therefore, patients receiving tocilizumab had a 4% lower risk of dying than those who didn’t. 
This means that if 100 patients received tocilizumab, four patients would be prevented from 
dying. This can also be expressed as the NNT:

NNT = 1/ARR = 1/0.04 = 25

This means that 25 patients need to be treated with tocilizumab in order to prevent one 
death.

Overall, this data provided strong evidence for the survival benefit with tocilizumab in 
hospitalised Covid-19 patients.
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3.8 Correlation and regression

3.8.1 Introduction
Correlation and regression are used to characterise the relationship between two 
variables. Correlation allows us to characterise the strength of the association between 
the two variables and can be used when neither variable is assumed to predict the 
other. In contrast, regression analyses are used to predict the effect of an explanatory 
variable on the outcome variable. These analyses can therefore only be used when one 
variable is thought to change the other. 

3.8.2 Correlation
Correlation is a statistical technique used to measure the strength of the association 
between two variables. There are two main measures of correlation: Pearson correlation 
coefficient and Spearman correlation coefficient.

Pearson correlation coefficient (r) provides a measure of the correlation between 
two variables when the relationship between the two is linear. It is a parametric test 
that can be used when data is normally distributed. r can be calculated using most 
statistical programs with the result ranging from – 1 to + 1:

1.	 If r is positive, an increase in one variable results in an increase in the other.

2.	 If r is negative, an increase in one variable results in a decrease in the other.

3.	 The magnitude of r indicates how closely the data points lie in relation to the 
line of best fit. When r is +1 or –1, there is perfect correlation between the two 
variables.

4.	 r2 represents the proportion of the variability in the dependent variable that can be 
explained by variability in the explanatory variable.

This is graphically depicted in Figure 3.14.

Spearman correlation coefficient is a non-parametric measure of correlation. It 
should be used if any of the following are true, in which cases, it is not possible to 
perform Pearson correlation.
	ā The sample size is small
	ā The relationship between the two variables is non-linear
	ā Neither x or y are normally distributed.

The value for Spearman correlation coefficient can be interpreted in a similar manner 
to Pearson correlation coefficient, with a value of +1 or –1 indicating perfect correlation 
and 0 indicating no correlation. 
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Figure 3.14. Scatter plots demonstrating positive and negative correlation with estimated r 
values.

3.8.3 Linear regression
Linear regression quantifies the linear relationship between two continuous variables; 
an explanatory or independent variable and a dependent variable. In these models, the 
explanatory variable is used to predict the dependent variable.

Imagine a simple study where investigators wanted to determine whether height 
(explanatory variable) predicts weight (dependent variable) in a cohort of children. 
In order to do this, the researchers measure the height and weight of 100 children. 
The next step would involve plotting the results on a scatter graph where x is the 
explanatory variable (height) and y is the dependent variable (weight). When the points 
form a linear relationship, we can plot the regression line; this is the line that best fits 
through all of the data points (Figure 3.15).

The following equation models the simple linear regression line:

y = a + bx

x = explanatory or independent variable e.g. height (cm)

y = dependent variable e.g. weight (kg)

a = Y intercept of the line

b = the gradient of the line, i.e. how much y increases for every unit increase in x and 
in this example, how much weight increases for every centimetre increase in height.
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By plotting the line of best fit, simple linear regression allows us to quantify the values 
for a and b. This allows us to predict the value of the dependent variable (e.g. weight) 
for any given value of the explanatory value (e.g. height). 

Now that we have discussed the interpretation of the regression line, we can consider 
methods used for its derivation; most commonly, the method of least squares.

The method of least squares minimises the differences between the observed values 
and the values predicted by the linear regression line.

Figure 3.16 illustrates the principles of this. Every observed value deviates from the 
linear regression line. The difference between the observed value and the line is called 
the residual. The method of least squares minimises the sum of the squares of these 
residuals, allowing the line to pass through the data points as closely as possible.

Figure 3.15. Linear regression line.

Figure 3.16. Principles of linear regression 
using the method of least squares.
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Assessing goodness of fit

In order to judge how well the line fits the data, we can calculate R2. This is defined as 
the percentage of variability of y that can be explained by variability in x. in general, the 
closer the points lie to the regression line, the higher the value for R2. 

Linear regression is a useful tool to model the association between two continuous 
variables; however, it can only be performed when the following assumptions are met: 

1.	 There is a linear relationship between x and y.

2.	 The observations in the sample are independent of each other.

3.	 The residuals are normally distributed.

4.	 The residuals have the same variability for all of the fitted values of y.

3.8.4 Multiple regression
In some cases, investigators are interested in the effect of several explanatory variables 
on the dependent variable. Multiple linear regression allows us to investigate this.

Multiple regression allows us to identify whether explanatory variables are associated 
with the dependent variable. By incorporating more than one explanatory variable into 
the model, multiple regression allows us to determine the extent to which explanatory 
variables are associated to the dependent variable after adjusting for other variables 
(often confounding factors). In similarity to linear regression, multiple regression can 
allow us to predict the value of the dependent variable from the value of the explanatory 
variables.

Different regression models are used for different types of explanatory variables. 
	ā Multiple linear regression models include more than one continuous explanatory 

variable.
	ā Multiple regression or Analysis of Covariance (ANCOVA) are models with more 

than one categorical explanatory variable, with or without multiple continuous 
explanatory variables.

3.8.5 Logistic regression
Logistic regression is similar to linear regression except that the dependent variable is a 
binary outcome; for example, the presence or absence of disease. Like linear regression, 
logistic regression allows us to characterise which explanatory variables influence the 
outcome. It can also be used to predict the risk of an outcome in the presence of 
explanatory variables (usually a risk factor for the development of a disease).
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The results from logistic regression are usually presented as odds ratios (OR). In these 
analyses, both unadjusted and adjusted OR are usually presented. Unadjusted OR 
represents the association between the explanatory and dependent variable, without 
taking the other explanatory variables into account. In contrast, the adjusted OR 
represents the association between the explanatory and dependent variable when 
all of the explanatory variables are considered. This allows us to consider whether the 
association between the variables is a true association or whether it is secondary to the 
presence of confounding variables.

3.8.6 Comparing and contrasting correlation and regression

Table 3.4: Comparing and contrasting correlation and regression

Correlation Regression

Measures the strength of association 
between two variables

Describes the effect of the explanatory variable (x) on the 
dependent variable (y)

The correlation coefficient measures the 
degree to which two variables move 
together

Allows us to predict the effect of changes in the explanatory 
variable on the value of the dependent variables

Regression analyses quantify the change in the dependent 
variable for every unit change in the explanatory variable

Graudal et al. (2019) Am J Clin Nutr, 109: 1273, doi.org/10.1093/ajcn/nqy384

This study aimed to investigate the effect of reducing sodium intake on blood pressure 
(BP) measurements in a population of hypertensive individuals. In order to do this, the 
investigators performed a meta-analysis of 133 RCTs investigating sodium intake on BP. The 
results from all of the RCTs are plotted in Figure 3.17 with the size of the circle representing 
the weight of the individual RCT. In this scatter plot, systolic blood pressure effect is the 
dependent / y variable and sodium reduction is the explanatory / x variable. A simple linear 
regression model has been used to characterise the relationship between sodium reduction 
and BP improvement in patients with a BP greater than 130mmHg.

WORKED EXAMPLE 
Dose-response relation between dietary sodium and blood 
pressure: a meta-regression analysis of 133 randomized 
controlled trials
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Figure 3.17. Linear regression showing the relationship between systolic blood pressure 
effect and sodium reduction. Each data point represents a different study, with the size of 
the circle representative of the size of the study. Reproduced from Am J Clin Nutr, 109: 1273 
with permission from Oxford University Press.

We can make the following conclusion from these results:

	• The gradient of the line represents the improvement in BP for a given reduction in sodium 
intake. In this case, there is a 5mmHg drop in BP for every 100mmol reduction in sodium 
intake. 

We cannot make the following conclusions:

	• Linear regression does not allow us to make predictions about the explanatory variable 
from the value of the dependent variable. Therefore, we cannot predict the sodium 
reduction from a patient’s SBP. 

	• We cannot use this model to make predictions for values that fall outside of the measured 
range. For example, it would be inappropriate to predict the BP effect of reducing sodium 
intake by 300mmol.

	• In this paper, a measure of goodness of fit was not reported. Therefore, we cannot 
comment on the proportion of variability in BP reduction explained by the sodium 
reduction. 

In this study, the authors went on to perform a multivariable analysis to allow for adjustment 
of confounding factors. The results from both analyses are summarised in Table 3.5. 
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Table 3.5: Study results from the univariable analysis (simple linear regression model) and 
the multivariable analysis

Univariable analysis Multivariable analysis

Baseline BP
Effect (95% CI) in 
mm Hg

P value
Effect (95% CI) in 
mm Hg

P value

SBP >131mmHg −5.0 (−7.1, −3.0)  0.0001  −6.2 (−8.5, −3.9)  0.0001 

As previously discussed, in the simple linear model, there was a 5mmHg drop in BP for every 
100mmol reduction in sodium intake. This is a statistically significant result with a P value 
of 0.0001. In model 1 of the multivariable analysis, the researchers adjusted for possible 
confounding factors including baseline BP, age, ethnicity and antihypertensive use. Some of 
these explanatory variables were continuous (e.g. baseline BP) and others were categorical 
(e.g. ethnicity). When the multiple regression model was used, a significant impact of sodium 
reduction on BP improvement remained.

3.9 Determination of sample size

It is essential to perform a sample size calculation during the planning of any 
confirmatory research study. This determines the number of participants needed to 
detect a statistically significant difference between the study groups.

3.9.1 Exploratory versus confirmatory research
The differentiation between exploratory and confirmatory research is essential when 
planning and appraising clinical studies. Broadly speaking, exploratory research aims to 
generate new hypotheses in areas where little may be known. In contrast, confirmatory 
research builds upon data from exploratory research in order to test existing hypotheses. 
The main differences between the two research types are summarised in Table 3.6.

Table 3.6: Comparing and contrasting exploratory vs. confirmatory research

Exploratory research Confirmatory research 

Explores unknown research questions Tests a priori hypotheses

Discovers new knowledge and is not based on previous 
studies

Generally based on previous studies

Does not offer final and conclusive statements but 
generates hypotheses to test in confirmatory research

Provides evidence to make inferences from the 
sample about the population

Less stringent research methods More stringent research methods 

Generates data for sample size calculations in 
confirmatory research 

Sample size calculation should be performed 
prior to the study

Descriptive statistics and accuracy of sample estimates 
can be performed

Descriptive statistics and accuracy of sample 
estimates can be performed

Null hypothesis statistical testing should not be 
performed 

Null hypothesis statistical testing can be 
performed
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3.9.2 Sample size calculations
In order to perform a sample size estimation, the following pieces of information should 
be considered. It is important to discuss all of these factors with a statistician during the 
planning of any clinical trial.
	ā The smallest magnitude of a clinically significant difference

	V For example, in a study of antihypertensive medications, we need to consider 
the fall in blood pressure that would be considered as clinically meaningful. This 
is based on prior research; for example, the fall in blood pressure required to 
reduce the risk for cardiovascular outcomes.

	ā The expected standard deviation of observations in each group
	V This is estimated from previous research.

	ā The power that is required of the study
	V Statistical power was discussed in Section 3.4.4. The power of the study describes 

the likelihood that it will detect a clinically significant difference between 
groups, if one exists in reality.

	V In most studies, the power is set at 80–90%.
	ā The type of statistical test that will be performed with the results

	V When planning a study, it is useful to consider the type of statistical analysis that 
will be performed with the results. Prior to performing the study, researchers 
often meet with a statistician to develop a plan for statistical testing that can be 
added to the study protocol. 

	ā The critical level of significance chosen
	V We know that a higher critical level of significance is associated with a 

decreased risk of type I error (false positive) and increased risk of type II error 
(false negative). 

	V Traditionally, we select a cut significance level of <0.05. At this cut-off level, in 
5% of cases, a type II error will be reported. 

WORKED EXAMPLE 
Efficacy and safety of albendazole and high-dose ivermectin 
coadministration in school-aged children infected with Trichuris 
trichiura in Honduras: a randomized controlled trial
Matamoros et al. (2021) Clin Infect Dis, 73: 1203, doi.org/10.1093/cid/ciab365

The following paragraph has been taken from a study comparing the efficacy of albendazole 
(ALB) and ivermectin (IVM) in the treatment of parasitic infection in children in Honduras. 
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As you can see the authors have considered:

1.	 The statistical test that will be used; in this case, a 1-tailed test for pairwise comparisons.

2.	 The expected cure rates with the different medications; this data has been taken from the 
existing literature.

3.	 The significance level required; the study has followed convention and used a cut-off of 
5%.

4.	 As multiple hypotheses have been tested, the authors corrected the 5% significance level 
using the Bonferroni correction. This was discussed in Section 3.4.5.

5.	 A power of 80% was selected; this is a common value to use. 

6.	 The number of participants lost to follow-up was estimated to be 10%.

Overall, the sample size calculation estimated that 177 participants would need to be 
recruited to the study. The authors stuck to this estimation and recruited a total of 176 
children to the study. Recruiting more children would be unnecessarily time-consuming and 
costly.

3.10 Analysis of survival data

Survival analyses characterise the time an individual takes to reach an endpoint of 
interest, often but not always death.

3.10.1 Kaplan–Meier survival curves
A survival curve is usually calculated by the Kaplan–Meier method and displays the 
cumulative probability of an individual remaining free of the endpoint of interest at 
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any time after baseline. The cumulative probability will only change once an endpoint 
has occurred. Therefore, the curve is drawn in a series of steps, starting at a survival 
probability of 100% and falling towards 0% as time increases.

An example of a survival curve is illustrated in Figure 3.18:

This study characterised the survival of patients with pancreatic cancer with and 
without pathogenic mutations in ATM. This Kaplan–Meier curve illustrates survival 
time following a diagnosis of pancreatic cancer. In this example, the cases did not have 
pathogenic ATM mutations, whereas the control patients did. As in all survival curves, 
percentage survival falls with time in a stepwise fashion as events (deaths) occur.

Kaplan–Meier survival curves can be used to generate the following useful pieces of 
information:
	ā Survival rates at defined time points

	V This is a common method of explaining survival data, for example, the 1-, 5- or 
10-year survival rate.

	V In the above example, the 20-month survival rate is around 85% in cases 
compared to only around 35% in controls.

	ā Median survival time (i.e. the time at which 50% of the patients are still alive)
	V In order to determine this, simply note the time at which the survival curve 

crosses 50%.
	V In the above example, the median survival in cases was 40.2 months compared 

to 15.5 months in the controls.

In the majority of cases, survival analyses measure an adverse endpoint, usually 
death. When the endpoint is favourable, such as recovery, the Kaplan–Meier curve 
is conventionally plotted upwards. In these scenarios, the curve starts at zero and 
increases towards 100% as time progresses.

3.10.2 Censored data
An important concept in survival analysis is censoring. When a patient’s data is censored, 
this means that we do not know the true survival time for the patient. There are three 
main reasons for this:

Figure 3.18. Kaplan–
Meier curve showing 
overall survival of 
patients diagnosed with 
pancreatic cancer with 
ATM mutations (cases) and 
without (controls). Figure 
reproduced from JNCI 
Cancer Spectrum,  2021: 5: 
pkaa121, with permission 
from Oxford University Press.
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1.	 The patient does not reach the endpoint by the time that the study has finished.

2.	 The patient withdraws from the study.

3.	 The patient is lost to follow-up during the period of the study. 

There are two main types of censored data:

Right censored data is the most common. It occurs when the patient does not reach 
the endpoint during the study. This is either because the patient survives until the end 
of the study or because they withdraw from the study before they reach the endpoint. 
In both cases, the exact survival time is not known; however, the true survival time will 
always be greater than the observed survival time.

In contrast, in left censored data, the true survival time is shorter than the observed 
survival time. This is rare but can occur in some circumstances. For example, imagine 
measuring the survival time of people infected with hepatitis C. In this scenario, survival 
time is measured from the date of serological diagnosis. In these cases, it is generally 
not possible to determine the exact time of infection. As infection precedes diagnosis, 
observed survival time is shorter than the true survival time.

Censored data is usually plotted as a plus on the survival curve. 

3.10.3 Log rank test
Statistical methods can be used to compare differences in the survival times in the two 
groups studied. The log rank test is one such method. This is a non-parametric test that 
guides the acceptance or rejection of the null hypothesis. The downside of this test 
is that it cannot assess the independent roles of more than one factor on the time to 
endpoint, and therefore cannot correct for confounding factors.

3.10.4 The Cox proportional hazards model and hazard ratios
The Cox model is the most widely used method to analyse time-to-event data. The 
model uses regression analysis to provide an estimate of the hazard ratio. This is the 
ratio of hazard rate in one group compared to the hazard rate in another group, where 
the hazard rate describes the probability of an outcome occurring over a defined time 
period.

The major advantage of the Cox model is that it can test the effects of explanatory 
variables on the time-to-endpoint. These variables can take the form of continuous, 
binary or categorical data. For example, imagine a study investigating the survival of 
patients following a new chemotherapy agent. The Cox model allows us to investigate 
whether a range of explanatory variables, such as patient age, sex or cancer stage, 
affect survival time. Clearly, this gives us important clinical information and allows us to 
determine which patients are most likely to benefit from this new treatment. 

The major disadvantage of the Cox model is that it assumes that the hazard ratio is 
constant over time. When this is not the case, the Cox model should not be used, at 
least not in its most simple form. 
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Interpreting hazard ratios from the Cox model

Interpretation of the hazard ratio is similar to interpretation of the relative risk. 

HR = 1 → there is no relationship between the explanatory variable and the outcome 
of interest.

HR <1 → the explanatory variable is protective against developing the hazard. 

HR >1 → the explanatory variable is a risk factor for developing the hazard.

WORKED EXAMPLE 
Association between bone mineral density at different anatomical 
sites and both mortality and fracture risk in patients receiving 
renal replacement therapy: a longitudinal study
Jaques et al. (2022) Clin Kidney J, 15: 1188, doi.org/10.1093/ckj/sfac034

This study aimed to investigate the effect of bone mineral density (BMD) on survival and 
fracture risk in patients with end-stage renal disease on renal replacement therapy (RRT).

Figure 3.19 represents a Kaplan–Meier curve demonstrating the risk of fracture (hip and 
overall) in patients with low BMD (blue line) compared to high BMD (red line).

Figure 3.19. Worked 
example outlining the 
interpretation of Kaplan–
Meier curves. These 
Kaplan–Meier curves clearly 
illustrate that patients with a 
low BMD have increased risk 
of hip and overall fracture 
compared to those with 
normal or high BMD. At 10 
years, around 7% of patients 
with a low BMD have 
suffered from a hip fracture 
compared to around 2% 
of patients with normal or 
high BMD. Reproduced from 
Clin Kidney J, 15: 1188 with 
permission from Oxford 
University Press.
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Table 3.7: Table summarising HR (95% CI) and P values for hip and any fracture using BMD 
as a predictor variable (normal/high versus low). In this example, the authors have used 
three models to assess the risk of BMD on hip and any fracture.

Model HR (95% CI) P value

Hip fracture

Univariate model 0.21 (0.10–0.45) <0.001

Partially adjusted model 0.33 (0.15–0.74) 0.007

Fully adjusted model 0.22 (0.08–0.62) 0.004

Any fracture

Univariate model 0.30 (0.18–0.50) <0.001

Partially adjusted model 0.45 (0.26–0.77) 0.004

Fully adjusted model 0.42 (0.21–0.83) 0.013

As you can see, patients with a normal/high BMD have a HR <1 when compared to those with 
a low BMD. This suggests that normal/high BMD is protective against fractures (hip and total). 

The use of different models in this analysis allows for adjustment for confounding factors. 
The first model (the univariate model) does not correct for confounding factors. The partially 
adjusted model corrects for the confounders RRT mode, age and gender. The fully adjusted 
model corrects for the above confounders in addition to BMI, ethnicity, gender, PTH, smoking 
and CRP. These are all factors that are known to influence fracture risk. In all three models, the 
effect of BMD on fracture risk remains significant. Therefore we can conclude that low BMD is 
associated with increased risk of fracture, even when confounding factors are accounted for.

Conclusion

In conclusion, this study demonstrated that patients on RRT with a low BMD were more likely 
to suffer from fractures than those with a normal or high BMD.

3.11 Meta-analysis

As discussed in Section 2.11.3, a meta-analysis is a type of systematic review that 
combines numerical data from multiple studies. 

3.11.1 Forest plots

A forest plot is the most common method to display the results from a meta-analysis 
(see Fig. 3.22 for an example). A forest plot summarises the estimated effect from 
individual trials and a summary measure which is derived from pooling the results from 
all of the studies.

The solid vertical line in a forest plot represents the ‘line of no effect’. This corresponds 
to a relative risk or odds ratio of one.

00_Understanding Clinical Research.indb   7900_Understanding Clinical Research.indb   79 05/04/2023   15:4005/04/2023   15:40



80 Chapter 3: Statistics

The results from individual studies are plotted vertically, with each study graphically 
represented by a box and a line. The location of the box gives us the effect estimate 
from the study of note. The size of the box corresponds to the weighting of the study 
to the summary measure. This is usually dependent on the size of the study, with larger 
studies carrying more weight and hence represented by larger squares. The length of 
the horizontal line represents the confidence interval of each study.

The summary measure is usually represented by a diamond. This is the weighted average 
of the effect estimates from all included studies and gives us the effect estimate from 
the meta-analysis. The horizontal length of the diamond represents the confidence 
interval of the summary estimate. The longer the diamond, the less certain we are in 
the summary result.

3.11.2 Publication bias

As discussed in Chapter 2, one disadvantage to meta-analysis is publication bias. This 
describes the tendency for studies with positive results to be published over those with 
negative results.

To consider whether publication bias is present, we can draw a funnel plot. This is a 
scatter diagram of all published studies with treatment effect on the horizontal axis and 
a measure of study precision, such as standard error, on the vertical axis.

When there is no publication bias, the funnel plot is symmetrical. If publication bias is 
present, the funnel is asymmetrical. This is depicted graphically in Figure 3.20, where 
published studies are generally larger or have a larger effect size. By omitting the results 
from the missing or unpublished studies, the estimated effect size is artificially inflated. 

If there is significant publication bias, there will be substantial asymmetry on the 
funnel plot. If the funnel plot appears grossly symmetrical, statistical tests, such as 
the Begg rank correlation test or Egger linear regression test, can be used to assess 
for publication bias. These methods should only be used when there are at least ten 
studies in the meta-analysis, as the power of the test is too low to distinguish chance 
from real asymmetry. These tests can also be used to adjust for publication bias.

Figure 3.20. Illustration 
of publication bias. In this 
funnel plot, published 
studies have a greater effect 
size and smaller standard 
error. The presence of 
publication bias leads to 
significant asymmetry in the 
funnel plot. 
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3.11.3 Tests for heterogeneity

In the context of meta-analysis, heterogeneity implies differences between study 
estimates. Heterogeneity occurs due to differences between study protocol, study 
design and participant demographics or comorbidities. 

Statistical methods can be used to test for heterogeneity in meta-analyses. The I2 statistic 
is a common measure of heterogeneity. It provides an estimate of the proportion of the 
total variability between estimates that can be attributed to heterogeneity between 
studies. The I2 statistic ranges between 0 and 100. The higher the I2, the larger the 
degree of heterogeneity. Although there is no hard and fast rule, we generally consider 
heterogeneity to be present when the I2 is greater than 50%. When the I2 is very large, 
the validity of combining study results, and therefore the summary estimate, is called 
into question. 

The presence of heterogeneity has multiple implications:
	ā Researchers use random effects methods rather than fixed effects methods (this is 

discussed in Section 2.11.3)
	ā Researchers can explore the treatment effects between groups with the aim of 

finding groups where homogeneity exists. For instance, a treatment may have a 
beneficial effect in one subgroup compared to another. By identifying this group, 
we can target the treatment to the right patient cohort.

Kollias et al. (2021) Atherosclerosis, 330: 114, doi.org/10.1016/j.atherosclerosis.2021.06.911

Background

Statins are lipid-lowering medications that are prescribed to patients with high 
cardiovascular risk. In previous studies, statins have demonstrated cardioprotective and 
immunomodulatory effects. In light of these effects, observational studies have been 
performed to investigate whether statins are associated with improved survival in patients 
with Covid-19. This study performed a systematic review and meta-analysis of observational 
studies investigating the relationship between statin use and Covid-19-related mortality. 

Methods

In this review, 22 studies fulfilled the inclusion criteria and were included in the meta-
analysis. Of these studies, 12 studies reported odds ratios and 10 studies reported hazard 
ratios. We will focus on the studies reporting odds ratio.

WORKED EXAMPLE 
Statin use and mortality in COVID-19 patients: updated systematic 
review and meta-analysis
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Figure 3.21. A worked example of a funnel plot. Reproduced from Atherosclerosis, 330: 114 
with permission from Elsevier.

The authors used funnel plots to assess for publication bias. In this example, the ln(odds 
ratio) is plotted on the vertical axis and the standard error of the odds ratio is plotted on 
the horizontal axis. Each study is represented by an individual circle, with larger circles 
representing larger studies. In this example, the funnel appears roughly symmetrical; 
however, its interpretation is limited by a small number of included studies. 

Results

The results from the meta-analysis of studies reporting odds ratios are illustrated in Figure 
3.22. The 12 included studies are listed vertically. As you can see, there are two large studies 
(Rosenthal and Mallow) that contribute 50% of the weighting to the pooled estimate. These 
studies are associated with a OR <1, and hence a protective effect of statins on Covid-
19-related mortality. The remainder of the studies are smaller and contribute a smaller 
weighting to the pooled estimate. These studies are represented by small boxes and wide 
confidence intervals.

The pooled OR estimate is 0.65 with a 95% confidence interval ranging from 0.55 to 0.78. 
Therefore, we are 95% certain that statin users have a OR of 0.55 to 0.78 for Covid-19-related 
mortality compared to non-statin users. This is a significant result with a P value <0.01 
indicating that statin users are significantly less likely to die from Covid-19 than non-users. 

In this meta-analysis, heterogeneity is present (I2 = 61%). This could be explained by 
between-study differences in statin dose, statin class, patient characteristics or Covid-19 
severity. Further work is needed to investigate the cause of heterogeneity and whether 
certain patients are more likely to benefit from statin therapy. 
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Figure 3.22. A worked example of a forest plot. Reproduced from Atherosclerosis, 330: 114 
with permission from Elsevier.

Conclusion

In conclusion, this meta-analysis suggests that statins are associated with a lower mortality 
rate in patients with Covid-19. Limitations to this study include its observational and 
retrospective nature. Furthermore, there was significant heterogeneity between studies, 
likely due to differences in study protocol, treatment regimen and patient characteristics.

3.12 Diagnostic tests

Together with history taking and clinical examination, investigations are vital in the 
diagnosis of many clinical conditions. No diagnostic test is 100% accurate in the 
detection of disease, and this section will discuss the measures of test validity.

3.12.1 Sensitivity and specificity

When evaluating the diagnostic utility of a test, we commonly consider the sensitivity 
and the specificity of the test.

In order to understand the definition of sensitivity and specificity, consider the following 
2×2 table outlining the frequencies of test results in those with and without the disease 
of interest. 

Test result Disease No disease

Positive a b

Negative c d
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Specificity 	 = �the proportion of individuals without the disease who test negative 
using the test

	 = d / b + d

Sensitivity 	 = �the proportion of individuals with the disease who test positive using 
the test 

	 = a / a + c

In an ideal world, all tests would be 100% sensitive and 100% specific for the diagnosis 
of disease. In clinical practice, tests often gain sensitivity at the expense of specificity 
and vice versa. Whether we aim for high sensitivity or high specificity depends on the 
disease in question. For example, tests with a high sensitivity are preferred when the 
disease of interest is easily treatable. In this scenario, we want to detect all cases of 
disease in order to provide treatment.

3.12.2 Predictive value
Whilst the sensitivity and specificity of the test characterise the diagnostic ability of the 
test, the predictive values indicate how likely it is that the individual has the disease in 
light of their test result.

Positive predictive value (PPV) 	 = �proportion of individuals with a positive test  
who have the disease

	 = a / (a + b)

Negative predictive value (NPV) 	 = �proportion of individuals with a negative test 
who do not have the disease

	 = c / (c + d)

The predictive values depend on the prevalence of the disease in the population of 
interest. In samples where the disease is common, the PPV is higher than in samples 
where the disease is rare.

3.12.3 Likelihood ratios and pre- and post-test odds
The likelihood ratio (LR) gives another measure of the performance of the test. It is 
calculated using the following formula:

LR = sensitivity / (1–specificity)

Therefore, when the LR is greater than 1, the test is more likely to give a positive result 
if the patient has the disease than if they did not. The greater the LR, the greater the 
discriminatory power of the test.

The pre- and post-test odds are the odds of the patient having the disease before and 
after the test is performed. Before the test is performed, the odds of the patient having 
the disease are the same as the general population. This is calculated as:

Pre-test odds = prevalence (1–prevalence)
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Following a positive test result, the odds of disease (post-test odds) depend on both 
the pre-test odds and the LR of the test. The post-test odds are calculated as:

Post-test odds = pre-test odds × LR

3.12.4 Receiver operating characteristic (ROC) curves

A ROC curve is used to determine a cut-off value for a diagnostic test, i.e. the value 
at which we state that the test is positive. The ROC curve is a plot of sensitivity versus 
(1 – specificity) across different cut-off values. A ROC curve is usually plotted with a 
line at an angle of 45°; this represents a test that performs no better than chance. The 
better the discriminatory capacity of the test, the closer the curve lies to the upper 
left-hand corner. The area under the curve (AUC) summarises the location of the curve, 
giving a combined measure of the sensitivity and specificity and hence the validity of 
the test. The higher the AUC, the higher the validity of the test. Mathematically, the 
AUC represents that a randomly chosen diseased individual is rated as more likely to 
have the disease by the test. The maximum AUC is 1, meaning that the test perfectly 
discriminates between diseased and non-diseased individuals. An AUC of 0.5 indicates 
that the test performs equally to chance. The AUC provides a useful measure of the test 
performance and allows us to compare the validity of multiple diagnostic tests.

Figure 3.23. Two ROC 
curves in comparison to 
chance level. The ROC 
curve for test A lies closer 
to the upper left corner of 
the graph and has a higher 
AUC and hence validity, as 
compared to test B. 

WORKED EXAMPLE 
Diagnostic value of anti-cyclic citrullinated peptide antibody in 
patients with rheumatoid arthritis
Zeng et al. (2003) J Rheumatol, 30: 1451, PMID: 12858440.

Background

The detection of anti-cyclic citrullinated peptide (CCP) antibody is a widely used diagnostic 
test in the investigation of rheumatoid arthritis (RA). This study aimed to describe the validity 
of a novel ELISA for the measurement of anti-CCP in the diagnosis of RA.
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Methods

In this study, the authors described a modified ELISA for the detection of anti-CCP antibodies. 
In order to describe the sensitivity and specificity of the ELISA, the investigators tested the 
serum of 191 patients with RA and 230 control subjects (including healthy controls and 
patients with non-RA rheumatological diagnoses).

Results

Table 3.8: A 2×2 table outlining the frequencies of CCP positivity in those with and without 
RA

RA Control patient

CCP positive 90 6

CCP negative 101 230

Table 3.8 summarises the results from the study. From this data, we can calculate the 
sensitivity and specificity of the anti-CCP ELISA:

Specificity 	 = �the proportion of individuals without the disease who test negative using 
the test

	 = 230 / (230 + 6) = 97.4%

As the specificity of the test is high, false positive results are rare (2.6% of all positive results). 
Therefore, we can conclude that the test is highly specific for RA and a positive result means 
that the patient is highly likely to have the disease.

Sensitivity 	 = �the proportion of individuals with the disease who test positive using the test 
	 = 90 / (90 + 101) = 47.1%

The sensitivity of the test is only 47%. Therefore, only 47% of people with RA test positive for 
anti-CCP using this ELISA. This means that the test has a high false negative rate and cannot 
be used to rule out the diagnosis of RA.

The authors calculated the PPV and NPV of the anti-CCP test in the study population. It is 
important to remember that the PPV and NPV are population-specific. Therefore, these 
results cannot be extrapolated to the wider population when the prevalence of RA is much 
lower than the study cohort.

PPV 	 = proportion of individuals with a positive test who have the disease 
	 = 90 / (90 + 6) 
	 = 94% 

Therefore, in this population, 94% of patients with a positive test had RA. 

NPV 	 = proportion of individuals with a negative test who do not have the disease 
	 = 230 / (230 + 101)
	 = 69%

Therefore, 69% of patients with a negative test did not have RA. 
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The authors plotted a ROC curve to determine the optimal value for the cut-off for a positive 
result. A cut-off value of 99 units was found to produce the optimal sensitivity and specificity. 
The AUC equals 0.764.

Conclusion

In this study, the presence of anti-CCP antibodies was highly specific but moderately 
sensitive for the diagnosis of RA. Therefore, testing for anti-CCP antibody provides a useful 
adjunct in the diagnosis of RA, but a negative test cannot be used to rule out the diagnosis. 

Figure 3.24. A worked 
example of a ROC curve. 
Reproduced from the 
Journal of Rheumatology 
with permission.

3.13 Chapter summary

Throughout this chapter, we have introduced some of the principles and methods that 
are commonly used in the statistical analysis of clinical research. Further detail can be 
found in dedicated statistics textbooks. Given the complexity of the subject, it is always 
important to include statisticians in the design, undertaking and analysis of research 
studies. 

3.14 Further reading

Statistics at Square One: www.bmj.com/about-bmj/resources-readers/publications/
statistics-square-one

Understanding statistics 1: presenting data from clinical trials: https://learning.bmj.
com/learning/module-intro/.html?moduleId=5003158
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Understanding statistics 2: what is statistical uncertainty?: https://learning.bmj.com/
learning/module-intro/.html?moduleId=5001080
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