Classical Mechanics
By John R. Taylor
Sep 2004 , 786 pp
ISBN 9781891389221
John Taylor has brought to his most recent book, Classical Mechanics, all of the clarity and insight that made his Introduction to Error Analysis a bestselling text. Classical Mechanics is intended for students who have studied some mechanics in an introductory physics course, such as “freshman physics." With unusual clarity, the book covers most of the topics normally found in books at this level, including conservation laws, oscillations, Lagrangian mechanics, twobody problems, noninertial frames, rigid bodies, normal modes, chaos theory, Hamiltonian mechanics, and continuum mechanics. A particular highlight is the chapter on chaos, which focuses on a few simple systems, to give a truly comprehensible introduction to the concepts that we hear so much about. At the end of each chapter is a large selection of interesting problems for the student, 744 in all, classified by topic and approximate difficulty, and ranging from simple exercises to challenging computer projects.
Adopted by more than 450 colleges and universities in the USA and Canada and translated into six languages, Taylor's Classical Mechanics is a thorough and very readable introduction to a subject that is four hundred years old but as exciting today as ever. The author manages to convey that excitement as well as deep understanding and insight.
Ancillaries
 A detailed Instructors' Manual is available for adopting professors.
 Art from the book may be downloaded by adopting professors.
Part I: THE ESSENTIALS

Newton's Laws of Motion
1.1 Classical Mechanics
1.2 Space and Time
1.3 Mass and Force
1.4 Newton's First and Second Laws; Inertial Frames
1.5 The Third Law and Conservation of the Momentum
1.6 Newton's Second Law in Cartesian Coordinates
1.7 TwoDimensional Polar Coordinates
1.8 Problems for Chapter 1 
Projectiles and Charged Particles
2.1 Air Resistance
2.2 Linear Air Resistance
2.3 Trajectory and Range in a Linear Motion
2.4 Quadratic Air Resistance
2.5 Motion of a Charge in a Uniform Magnetic Field
2.6 Complex Exponentials
2.7 Solution for the Charge in a B Field
2.8 Problems for Chapter 2 
Momentum and Angular Momentum
3.1 Conservation of Momentum
3.2 Rockets
3.3 The Center of Mass
3.4 Angular Momentum for a Single Particle
3.5 Angular Momentum for Several Particles
3.6 Problems for Chapter 3 
Energy
4.1 Kinetic Energy and Work
4.2 Potential Energy and Conservative Forces
4.3 Force as the Gradient of Potential Energy
4.4 The Second Condition that F be Conservative
4.5 TimeDependent Potential Energy
4.6 Energy for Linear OneDimensional Systems
4.7 Curvilinear OneDimensional Systems
4.8 Central Forces
4.9 Energy of Interaction of Two Particles
4.10 The Energy of a Multiparticle System
4.11 Problems for Chapter 4 
Oscillations
5.1 Hooke's Law
5.2 Simple Harmonic Motion
5.3 TwoDimensional Oscillators
5.4 Damped Oscillators
5.5 Driven Damped Oscillations
5.6 Resonance
5.7 Fourier Series
5.8 Fourier Series Solution for the Driven Oscillator
5.9 The RMS Displacement; Parseval's Theorem
5.10 Problems for Chapter 5 
Calculus of Variations
6.1 Two Examples
6.2 The EulerLagrange Equation
6.3 Applications of the EulerLagrange Equation
6.4 More than Two Variables
6.5 Problems for Chapter 6 
Lagrange's Equations
7.1 Lagrange's Equations for Unconstrained Motion
7.2 Constrained Systems; an Example
7.3 Constrained Systems in General
7.4 Proof of Lagrange's Equations with Constraints
7.5 Examples of Lagrange's Equations
7.6 Conclusion
7.7 Conservation Laws in Lagrangian Mechanics
7.8 Lagrange's Equations for Magnetic Forces
7.9 Lagrange Multipliers and Constraint Forces
7.10 Problems for Chapter 7 
TwoBody Central Force Problems
8.1 The Problem
8.2 CM and Relative Coordinates; Reduced Mass
8.3 The Equations of Motion
8.4 The Equivalent OneDimensional Problems
8.5 The Equation of the Orbit
8.6 The Kepler Orbits
8.7 The Unbonded Kepler Orbits
8.8 Changes of Orbit
8.9 Problems for Chapter 8 
Mechanics in Noninertial Frames
9.1 Acceleration without Rotation
9.2 The Tides
9.3 The Angular Velocity Vector
9.4 Time Derivatives in a Rotating Frame
9.5 Newton's Second Law in a Rotating Frame
9.6 The Centrifugal Force
9.7 The Coriolis Force
9.8 Free Fall and The Coriolis Force
9.9 The Foucault Pendulum
9.10 Coriolis Force and Coriolis Acceleration
9.11 Problems for Chapter 9 
Motion of Rigid Bodies
10.1 Properties of the Center of Mass
10.2 Rotation about a Fixed Axis
10.3 Rotation about Any Axis; the Inertia Tensor
10.4 Principal Axes of Inertia
10.5 Finding the Principal Axes; Eigenvalue Equations
10.6 Precession of a Top Due to a Weak Torque
10.7 Euler's Equations
10.8 Euler's Equations with Zero Torque
10.9 Euler Angles
10.10 Motion of a Spinning Top
10.11 Problems for Chapter 10 
Coupled Oscillators and Normal Modes
11.1 Two Masses and Three Springs
11.2 Identical Springs and Equal Masses
11.3 Two Weakly Coupled Oscillators
11.4 Lagrangian Approach; the Double Pendulum
11.5 The General Case
11.6 Three Coupled Pendulums
11.7 Normal Coordinates
11.8 Problems for Chapter 11
Part II: FURTHER TOPICS

Nonlinear Mechanics and Chaos
12.1 Linearity and Nonlinearity
12.2 The Driven Damped Pendulum or DDP
12.3 Some Expected Features of the DDP
12.4 The DDP; Approach to Chaos
12.5 Chaos and Sensitivity to Initial Conditions
12.6 Bifurcation Diagrams
12.7 StateSpace Orbits
12.8 Poincare Sections
12.9 The Logistic Map
12.10 Problems for Chapter 12 
Hamiltonian Mechanics
13.1 The Basic Variables
13.2 Hamilton's Equations for OneDimensional Systems
13.3 Hamilton's Equations in Several Dimensions
13.4 Ignorable Coordinates
13.5 Lagrange's Equations vs. Hamilton's Equations
13.6 PhaseSpace Orbits
13.7 Liouville's Theorem
13.8 Problems for Chapter 13 
Collision Theory
14.1 The Scattering Angle and Impact Parameter
14.2 The Collision Cross Section
14.3 Generalizations of the Cross Section
14.4 The Differential Scattering Cross Section
14.5 Calculating the Differential Cross Section
14.6 Rutherford Scattering
14.7 Cross Sections in Various Frames
14.8 Relation of the CM and Lab Scattering Angles
14.9 Problems for Chapter 14 
Special Relativity
15.1 Relativity
15.2 Galilean Relativity
15.3 The Postulates of Special Relativity
15.4 The Relativity of Time; Time Dilation
15.5 Length Contraction
15.6 The Lorentz Transformation
15.7 The Relativistic VelocityAddition Formula
15.8 FourDimensional SpaceTime; FourVectors
15.9 The Invariant Scalar Product
15.10 The Light Cone
15.11 The Quotient Rule and Doppler Effect
15.12 Mass, FourVelocity, and FourMomentum
15.13 Energy, the Fourth Component of Momentum
15.14 Collisions
15.15 Force in Relativity
15.16 Massless Particles; the Photon
15.17 Tensors
15.18 Electrodynamics and Relativity
15.19 Problems for Chapters 15

Continuum Mechanics
16.1 Transverse Motion of a Taut String
16.2 The Wave Equation
16.3 Boundary Conditions; Waves on a Finite String
16.4 The ThreeDimensional Wave Equation
16.5 Volume and Surface Forces
16.6 Stress and Strain: the Elastic Moduli
16.7 The Stress Tensor
16.8 The Strain Tensor for a Solid
16.9 Relation between Stress and Strain: Hooke's Law
16.10 The Equation of Motion for an Elastic Solid
16.11 Longitudinal and Transverse Waves in a Solid
16.12 Fluids: Description of the Motion
16.13 Waves in a Fluid
16.14 Problems for Chapter 16